Log in

Modeling the plankton–fish dynamics with top predator interference and multiple gestation delays

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many prey organisms have developed defense mechanisms against predation. If the predator can encounter in a limited spatial domain, the feeding rates reflect interference between predators and the corresponding functional response depends on both predator and prey densities. In this manuscript, an attempt has been made to understand the role of top predator interference and gestation delays on the dynamics of a three-species food chain model involving intermediate and top predators population. Interaction between the prey and an intermediate predator follows the Monod–Haldane functional response, while that between the top predator and its prey depends on Beddington–DeAngelis-type functional response. Analytically, we study the essential mathematical features such as boundedness, stability and direction of bifurcating periodic solution around the coexisting equilibrium for the model system. Numerically, we study the Hopf and transcritical bifurcations scenarios with respect to inhibitory effect of phytoplankton against zooplankton and death rate of fish population for the non-delayed system. Further, we study the stability behavior of the delayed model system. Model system exhibits irregular behavior when the interference is high or gestation period is larger than its critical value. Further, the system shows extinction of predators with the increase in inhibitory effect. Stability domain plots with respect to different important system parameters for non-delayed system and delay parameters for delayed system give a significant impact to study the stability of the different equilibrium points and bifurcation scenarios of both non-delayed and delayed systems. Our results point out the complexity of three-way interactions between phytoplankton, zooplankton and fish population in marine environment and highlight the role of predator interference and gestation delays in exhibiting the chaotic dynamics and extinction of predator population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Smayda,TJ. and Shimizu,Y. (eds) Toxic Phytoplankton Blooms in the Sea. Developments in marine biology, vol. 3. Elsevier, Amsterdam , pp. 1–952 (1993).

  2. Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62, 271–282 (1991a)

    Google Scholar 

  3. Vilar, J.M.G., Solé, R.V., Rubí, J.M.: On the origin of plankton patchiness. Phys. A Stat. Mech. Appl. 317(1–2), 239–246 (2003)

    MathSciNet  Google Scholar 

  4. Chattopadhyay, J., Chatterjee, S., Venturino, E.: Patchy agglomeration as a transition from monospecies to recurrent plankton blooms. J. Theor. Biol. 253(2), 289–295 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Malchow, H.: Motion instabilities in predator–prey systems. J. Theor. Biol. 204(4), 639–647 (2000)

    Google Scholar 

  6. Levi, S.A., Segel, L.A.: Hypothesis for origin of planktonic patchness. Nature 259(5545), 659 (1976)

    Google Scholar 

  7. Greene, C.H., Widder, E.A., Youngbluth, M.J., Tamse, A., Johnson, G.E.: The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layers. Limnol. Oceanogr. 37(3), 650–658 (1992)

    Google Scholar 

  8. Abbott, M.: Phytoplankton patchiness: ecological implications and observation methods. Patch Dyn. 96, 37–49 (1993)

    Google Scholar 

  9. Blaxter, J.H.S., Southward, A.J. (eds.): Advances in Marine Biology, vol. 83(3), pp. 264–265. Academic Press, San Diego (1997)

    Google Scholar 

  10. Hallegraeff, G.M.: A review of harmful algal blooms and their apparent global increase. Phycologia 32(2), 79–99 (1993)

    Google Scholar 

  11. Roy, S., Chattopadhyay, J.: Toxin-allelopathy among phytoplankton species prevents competitive exclusion. J. Biol. Syst. 15(01), 73–93 (2007)

    MATH  Google Scholar 

  12. Roy, S., Alam, S., Chattopadhyay, J.: Competing effects of toxin-producing phytoplankton on overall plankton populations in the Bay of Bengal. Bull. Math. Biol. 68(8), 2303–2320 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Chakraborty, S., Chattopadhyay, J.: Nutrient-phytoplankton–zooplankton dynamics in the presence of additional food source—a mathematical study. J. Biol. Syst. 16(04), 547–564 (2008)

    MATH  Google Scholar 

  14. Chakraborty, S., Bhattacharya, S., Feudel, U., Chattopadhyay, J.: The role of avoidance by zooplankton for survival and dominance of toxic phytoplankton. Ecol. Complex. 11, 144–153 (2012)

    Google Scholar 

  15. Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58(3), 459–479 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71(1), 125–149 (2015)

    MathSciNet  MATH  Google Scholar 

  17. May, R.M.: Time-delay versus stability in population models with two and three trophic levels. Ecology 54(2), 315–325 (1973)

    Google Scholar 

  18. Yang, Y.: Hopf bifurcation in a two-competitor, one-prey system with time delay. Appl. Math. Comput. 214(1), 228–235 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Meng, X.Y., Huo, H.F., Zhang, X.B., **ang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64(4), 349–364 (2011)

    MathSciNet  Google Scholar 

  20. Rehim, M., Imran, M.: Dynamical analysis of a delay model of phytoplankton–zooplankton interaction. Appl. Math. Model. 36(2), 638–647 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Kuang, Y. (ed.): Delay Differential Equations: With Applications in Population Dynamics, vol. 191. Academic press, New York (1993)

    MATH  Google Scholar 

  22. Freedman, H.I., Ruan, S.: Hopf bifurcation in three-species food chain models with group defense. Math. Biosci. 111(1), 73–87 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Ma, Z.P., Li, W.T., Yan, X.P.: Stability and Hopf bifurcation for a three-species food chain model with time delay and spatial diffusion. Appl. Math. Comput. 219(5), 2713–2731 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Erbe, L.H., Freedman, H.I., Rao, V.S.H.: Three-species food-chain models with mutual interference and time delays. Math. Biosci. 80(1), 57–80 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Naji, R.K., Upadhyay, R.K., Rai, V.: Dynamical consequences of predator interference in a tri-trophic model food chain. Nonlinear Anal. Real World Appl. 11(2), 809–818 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Sarwardi, S., Haque, M., Mandal, P.K.: Persistence and global stability of Bazykin predator-prey model with Beddington-DeAngelis response function. Commun. Nonlinear Sci. Numer. Simul. 19(1), 189–209 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Chen, Y.: Multiple periodic solutions of delayed predator-prey systems with type IV functional responses. Nonlinear Anal. Real World Appl. 5(1), 45–53 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 17(2), 914–929 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, L.Y.: Hopf bifurcation analysis in a Monod–Haldane predator–prey model with delays and diffusion. Appl. Math. Model. 39(3–4), 1369–1382 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Batabyal, S., Jana, D., Lyu, J., Parshad, R.D.: Explosive predator and mutualistic preys: a comparative study. Phys. A Stat. Mech. Appl. 541, 123348 (2019)

    MathSciNet  Google Scholar 

  31. Jana, D., Upadhyay, R.K., Agrawal, R., Parshad, R.D., Basheer, A.: Explosive tritrophic food chain models with interference: a comparative study. J. Franklin Inst. 357, 385–413 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Pal, N., Samanta, S., Biswas, S., Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with delay. Int. J. Bifurc. Chaos 25(09), 1550123 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Anderson, T.W.: Predator responses, prey refuges, and density-dependent mortality of a marine fish. Ecology 82(1), 245–257 (2001)

    Google Scholar 

  34. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator-prey system with several response functions—a comparative study. J. Theor. Biol. 248(1), 10–25 (2007)

    MathSciNet  Google Scholar 

  35. Sharma, A., Sharma, A.K., Agnihotri, K.: Analysis of a toxin producing phytoplankton-zooplankton interaction with Holling IV type scheme and time delay. Nonlinear Dyn. 81(1–2), 13–25 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Zeng, G., Wang, F., Nieto, J.J.: Complexity of a delayed predator-prey model with impulsive harvest and Holling type II functional response. Adv. Complex Syst. 11(01), 77–97 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5), 293–320 (1959)

    Google Scholar 

  38. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)

    Google Scholar 

  39. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grou** on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    MATH  Google Scholar 

  40. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223(5211), 1133 (1969)

    Google Scholar 

  41. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44(1), 331–340 (1975)

    Google Scholar 

  42. DeAngelis, D.L., Goldstein, R.A., O’neill, R.V.: A model for tropic interaction. Ecology 56(4), 881–892 (1975)

    Google Scholar 

  43. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8(3), 211–221 (1989)

    Google Scholar 

  44. Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Google Scholar 

  45. Upadhyay, R.K., Naji, R.K., Raw, S.N., Dubey, B.: The role of top predator interference on the dynamics of a food chain model. Commun. Nonlinear Sci. Numer. Simul. 18(3), 757–768 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Jana, D., Tripathi, J.P.: Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model. Int. J. Dyn. Control 5(4), 999–1009 (2017)

    MathSciNet  Google Scholar 

  47. Chakraborty, S., Kooi, B.W., Biswas, B., Chattopadhyay, J.: Revealing the role of predator interference in a predator-prey system with disease in prey population. Ecol. Complex. 21, 100–111 (2015)

    Google Scholar 

  48. Pal, R., Basu, D., Banerjee, M.: Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response—a mathematical study. Biosystems 95(3), 243–253 (2009)

    Google Scholar 

  49. Liu, Z., Tan, R.: Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system. Chaos Solitons Fractals 34(2), 454–464 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Pei, Y., Zeng, G., Chen, L.: Species extinction and permanence in a prey-predator model with two-type functional responses and impulsive biological control. Nonlinear Dyn. 52(1–2), 71–81 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Maiti, A., Pal, A.K., Samanta, G.P.: Effect of time-delay on a food chain model. Appl. Math. Comput. 200(1), 189–203 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Do, Y., Baek, H., Lim, Y., Lim, D.: A three-species food chain system with two types of functional responses. In: Abstract and Applied Analysis. Hindawi (2011)

  53. Zhang, Z., Yang, H., Liu, J.: Bifurcation analysis for a delayed food chain system with two functional responses. Electron. J. Qual. Theory Differ. Equ. 2013(53), 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Caro, T.: Antipredator Defenses in Birds and Mammals. University of Chicago Press, Chicago (2005)

    Google Scholar 

  55. Jeschke, J.M.: Density-dependent effects of prey defenses and predator offenses. J. Theor. Biol. 242(4), 900–907 (2006)

    MathSciNet  Google Scholar 

  56. Mishra, P., Raw, S.N., Tiwari, B.: Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators. Chaos Solitons Fractals 120, 1–16 (2019)

    MathSciNet  Google Scholar 

  57. Jana, D., Agrawal, R., Upadhyay, R.K.: Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solitons Fractals 69, 50–63 (2014)

    MathSciNet  MATH  Google Scholar 

  58. Nagumo, M.: Über die Lage der Integralkurven gewönlicher Differentialgleichungen. In: Proceedings of the Physico-Mathematical Society of Japan, 3rd Series, vol. 24, pp. 551–559 (1942)

  59. Song, Y.L., Wei, J.J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solitons Fractals 22(1), 75–91 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  61. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive, Cambridge (1981)

    MATH  Google Scholar 

  62. Jana, D., Bairagi, N.: Habitat complexity, dispersal and metapopulations: macroscopic study of a predatorprey system. Ecol. Complex. 17, 131–139 (2014)

    Google Scholar 

  63. Jana, D.: Chaotic dynamics of a discrete predator-prey system with prey refuge. Appl. Math. Comput. 224, 848–865 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Jana, D., Agrawal, R., Upadhyay, R.K.: Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge. Appl. Math. Comput. 268, 1072–1094 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Jana, D., Agrawal, R., Upadhyay, R.K., Samanta, G.P.: Ecological dynamics of age selective harvesting of fish population: maximum sustainable yield and its control strategy. Chaos Solitons Fractals 93, 111–122 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research work is supported by Science and Engineering Research Board (SERB), Government of India, under the Grant No. EMR/2017/000607 to the first author (Nilesh Kumar Thakur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar Upadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to compute the properties of the Hopf bifurcation, we denote any one of the critical values of \( \tau \) by \( \tau ^* \) without generality loss, and a pair of purely imaginary roots \( \pm i \omega _0 \) exists in Eq. (3.13) by which system undergoes Hopf bifurcation. Let \(N=N^*+x_1\), \(P=P^*+x_2 \), \(Z=Z^*+x_3\), \( \mu =\tau -\tau ^* \), where \( \mu \in \mathrm{Re} \). Rescaling the time by \( t \longrightarrow \frac{t}{\tau } \), system (3.1) can be written into the following continuous real-valued functions as \( C=([-1,0],\mathrm{Re}^3) \)

$$\begin{aligned} \dot{x}(t)=L_\mu (x_t)+f(\mu ,x_t), \end{aligned}$$
(7.1)

where \( x(t)=(x_1(t),x_2(t),x_3(t))^T\in \mathrm{Re}^3 \) and \( L_\mu :C\rightarrow \mathrm{Re}^3, \ f:\mathrm{Re}\times C\rightarrow \mathrm{Re}^3 \) are given, respectively,

$$\begin{aligned} L_\mu (\phi )=(\tau ^*+\mu )[J_1 \phi (0)+J_2 \phi (-1)], \end{aligned}$$
(7.2)

such that

$$\begin{aligned} J_1= & {} \left( \begin{array}{ccc} -\frac{rN^*}{K}+\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad -\frac{w_1N^*}{(jN^{*2}+a)} &{}\quad 0 \\ 0 &{}\quad \frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad -\frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{}\quad 0 &{}\quad 0 \end{array}\right) ,\\ J_2= & {} \left( \begin{array}{ccc} 0 &{}\quad 0 &{}\quad 0 \\ \\ -\frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad \frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad -\frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right) , \end{aligned}$$

and

$$\begin{aligned} f(\mu ,\phi )=(\tau ^*+\mu )\left( \begin{array}{c} -\frac{r}{K}\phi _{1}^{2}(0) - \frac{w_1\phi _1(0) \phi _2(0)}{j\phi _{1}^{2}(0)+a} \\ \frac{w_2\phi _1(-1)\phi _2(0)}{j\phi _{1}^{2}(-1)+a}-\frac{w_3\phi _2(0)\phi _3(0)}{\phi _2(0)+b\phi _3(0)+c} \\ \frac{w_4\phi _2(-1)\phi _3(0)}{\phi _2(-1)+b\phi _3(-1)+c} \end{array}\right) ,\nonumber \\ \end{aligned}$$
(7.3)

where \( \phi (\theta )=(\phi _1(\theta ),\phi _2(\theta ),\phi _3(\theta ))^T \in C([-1,0],\mathrm{Re}^3) \).

By the Riesz representation theorem, there exist a function \( \eta (\theta ,\mu )\) of bounded variation for \( \theta \in [-1,0] \), such that

$$\begin{aligned} L_\mu \phi = \int _{-1}^{0} \mathrm{d}\eta (\theta ,\mu )\phi (\theta ), \quad \text {for} \quad \phi \in C. \end{aligned}$$
(7.4)

In fact, we can take

$$\begin{aligned} \eta (\theta ,\mu )=(\tau ^*+\mu )[J_1 \delta (\theta )+J_2 \delta (\theta +1)], \end{aligned}$$
(7.5)

where \( \delta (\theta ) \) is the Dirac delta function.

For \( \phi \in C_1 ([-1,0],\mathrm{Re}^3) \), define

$$\begin{aligned} A(\mu )\phi = {\left\{ \begin{array}{ll} \frac{\mathrm{d}\phi (\theta )}{\mathrm{d}\theta }, &{} \theta \in [-1,0),\\ \int _{-1}^{0} \phi (s) \mathrm{d}\eta (s,\mu ), &{} \theta =0 \end{array}\right. } \end{aligned}$$
(7.6)

and

$$\begin{aligned} R(\mu )\phi = {\left\{ \begin{array}{ll} 0, &{} \theta \in [-1,0),\\ f(\mu ,\phi ), &{} \theta =0. \end{array}\right. } \end{aligned}$$
(7.7)

System (7.1) is then equivalent to

$$\begin{aligned} \dot{x_t}=A(\mu ) x_t +R(\mu ) x_t, \end{aligned}$$
(7.8)

where \( x_t(\theta )=x(t+\theta ) \) for \( \theta \in [-1,0]. \)

For \( \psi \in C^1([0,1],(\mathrm{Re}^3)^*) \), define

$$\begin{aligned} A^* \psi (s)= {\left\{ \begin{array}{ll} -\frac{\mathrm{d}\psi (s)}{\mathrm{d}s} &{} s\in (0,1],\\ \int _{-1}^0 \psi (-t)\mathrm{d}\eta ^T (t,0), &{} s = 0, \end{array}\right. } \end{aligned}$$
(7.9)

and a bilinear inner product is given by

$$\begin{aligned} \begin{aligned} \langle \psi (s), \phi (\theta ) \rangle&=\overline{\psi }(0)\phi (0)-\int _{\theta =-1}^0 \int _{\xi =0}^\theta \overline{\psi }(\xi -\theta )\\&\quad \times \mathrm{d}\eta (\theta )\phi (\xi )\mathrm{d}\xi , \end{aligned} \end{aligned}$$
(7.10)

where \(\overline{\psi }(0)\) and \(\overline{\psi }(\xi -\theta )\) are the complex conjugate of \(\psi (0)\) and \(\psi (\xi -\theta )\).

For further calculation, we assume that \( i\omega _0\tau ^* \) and \( -i\omega _0\tau ^* \) are eigenvalues of A(0) and \( A^* \), respectively.

Now, let \( q(\theta )=(1,\sigma _2,\sigma _3)^T \mathrm{e}^{i\omega _0\tau ^*\theta } \) and \( q^*(s)=M (1,\sigma _2^*,\sigma _3^*)\)\(\times \mathrm{e}^{i\omega _0\tau ^* s} \) are the eigenvector of A(0) and \( A^*(0)\) corresponding to \( +i\omega _0\tau ^* \) and \( -i\omega _0\tau ^* \), respectively. Then,

$$\begin{aligned} Aq(\theta )=i\omega _0\tau ^*q(\theta ), \end{aligned}$$
(7.11)

and for \(\theta =0\), we obtained

$$\begin{aligned} \tau ^*\left( \begin{array}{ccc} i\omega _0+\frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)}&{}\quad 0 \\ \mathrm{e}^{-i\omega _0\tau ^*}\frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad \quad i\omega _0-\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{}\quad -\mathrm{e}^{-i\omega _0\tau ^*}\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad i\omega _0+\mathrm{e}^{-i\omega _0\tau ^*}\frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right) q(0)=\left( \begin{array}{ccc} 0 \\ \\ 0 \\ \\ 0 \end{array}\right) . \end{aligned}$$
(7.12)

Solving the system of equations, we get

$$\begin{aligned} \sigma _2&=\frac{2jN^*P^*}{(jN^{*2}+a)}-\frac{r(jN^{*2}+a)}{w_1K}-\frac{i\omega _0(jN^{*2}+a)}{w_1N^*}, \end{aligned}$$

and

$$\begin{aligned} \sigma _3=\frac{\sigma _2w_4Z^*(bZ^*+c)}{\mathrm{e}^{i\omega _0\tau ^*}i\omega _0(P^*+bZ^*+c)^2+w_4bP^*Z^*}. \end{aligned}$$

Similarly, let

$$\begin{aligned} A^*q^*(s)=-i\omega _0\tau ^*q^*(s), \end{aligned}$$
(7.13)

where

$$\begin{aligned} \sigma _{2}^{*}&=\frac{2jw_1N^{*2}}{\mathrm{e}^{-i\omega _0\tau ^*}w_2(jN^*-a)}-\frac{rN^*(jN^{*2}+a)^2}{\mathrm{e}^{-i\omega _0\tau ^*}w_2KP^*(jN^*-a)}\\&\quad -\frac{i\omega _0(jN^{*2}+a)^2}{\mathrm{e}^{-i\omega _0\tau ^*}w_2P^*(jN^*-a)}, \end{aligned}$$

and

$$\begin{aligned} \sigma _{3}^{*}=-\frac{\sigma _2^*w_3P^*(P^*+c)}{\mathrm{e}^{-i\omega _0\tau ^*}w_4bP^*Z^*+i\omega _0(P^*+bZ^*+c)^2}. \end{aligned}$$

Under the normalization condition \(\langle q^*(s),q(\theta ) \rangle = 1\), we have

$$\begin{aligned} M=\frac{1}{\overline{D}}, \end{aligned}$$

where

$$\begin{aligned} D&=1+ \sigma _2\overline{\sigma }_2^*+ \sigma _3\overline{\sigma }_3^*+ \tau ^*\Bigg (-\frac{\overline{\sigma }_2^*w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2}\\&\quad +\frac{\overline{\sigma }_3^*w_4Z^*\big (\sigma _2(bZ^*+c)- \sigma _3bP^*\big )}{(P^*+bZ^*+c)^2}\Bigg )\mathrm{e}^{-i\omega _0\tau ^*} \end{aligned}$$

and \(\overline{D}\) is the complex conjugate of D.

Now following in the same manner as given in [61], we obtained

$$\begin{aligned} g(z,\bar{z})&=\tau ^* \overline{M} (1,\overline{\sigma }_2^*, \overline{\sigma }_3^*) \left( \begin{array}{c} -\frac{r}{K}\phi _{1}^{2}(0) - \frac{w_1\phi _1(0) \phi _2(0)}{j\phi _{1}^{2}(0)+a}\\ \frac{w_2\phi _1(-1)\phi _2(0)}{j\phi _{1}^{2}(-1)+a}-\frac{w_3\phi _2(0)\phi _3(0)}{\phi _2(0)+b\phi _3(0)+c} \\ \frac{w_4\phi _2(-1)\phi _3(0)}{\phi _2(-1)+b\phi _3(-1)+c} \end{array}\right) , \end{aligned}$$
(7.14)

which can also be written as

$$\begin{aligned} g(z,\bar{z})&=\tau ^* \overline{M} (1,\overline{\sigma }_2^*, \overline{\sigma }_3^*) \left( \begin{array}{c} -\frac{r}{K}x_{1t}^{2}(0) - \frac{w_1x_{1t}(0) x_{2t}(0)}{jx_{1t}^{2}(0)+a} \\ \frac{w_2x_{1t}(-1)x_{2t}(0)}{jx_{1t}^{2}(-1)+a}-\frac{w_3x_{2t}(0)x_{3t}(0)}{x_{2t}(0)+bx_{3t}(0)+c} \\ \frac{w_4x_{2t}(-1)x_{3t}(0)}{x_{2t}(-1)+bx_{3t}(-1)+c} \end{array}\right) ,\nonumber \\ \end{aligned}$$
(7.15)

where

$$\begin{aligned} x_{1t}(0)&= z+ \overline{z} + W_{20}^{(1)} (0) \frac{z^2}{2} + W_{11}^{(1)} (0) z \overline{z}\\&\quad +W_{02}^{(1)} (0) \frac{\overline{z}^2}{2} +\cdots ,\\ x_{2t}(0)&= \sigma _2 z+ \overline{\sigma }_2 \overline{z} + W_{20}^{(2)} (0) \frac{z^2}{2} + W_{11}^{(2)} (0) z \overline{z}\\&\quad + W_{02}^{(2)} (0) \frac{\overline{z}^2}{2} +\cdots ,\\ x_{3t}(0)&=\sigma _3z+\overline{\sigma }_3\overline{z}+W_{20}^{(3)}(0)\frac{z^2}{2}+W_{11}^{(3)}(0)z\overline{z}\\&\quad +W_{02}^{(3)}(0)\frac{\overline{z}^2}{2}+\cdots ,\\ x_{1t}(-1)&= z \mathrm{e}^{-i\omega _0 \tau ^*} + \overline{z} \mathrm{e}^{i\omega _0 \tau ^*} + W_{20}^{(1)} (-1) \frac{z^2}{2}\\&\quad + W_{11}^{(1)} (-1) z \overline{z} + W_{02}^{(1)} (-1) \frac{\overline{z}^2}{2} +\cdots ,\\ x_{2t}(-1)&=\sigma _2z \mathrm{e}^{-i\omega _0 \tau ^*} + \overline{\sigma }_2\overline{z} \mathrm{e}^{i\omega _0 \tau ^*} + W_{20}^{(2)} (-1) \frac{z^2}{2}\\&\quad + W_{11}^{(2)} (-1) z \overline{z} + W_{02}^{(2)} (-1) \frac{\overline{z}^2}{2} +\cdots ,\\ x_{3t}(-1)&=\sigma _3z \mathrm{e}^{-i\omega _0 \tau ^*} + \overline{\sigma }_3\overline{z} \mathrm{e}^{i\omega _0 \tau ^*} + W_{20}^{(3)} (-1) \frac{z^2}{2}\\&\quad + W_{11}^{(3)} (-1) z \overline{z} + W_{02}^{(3)} (-1) \frac{\overline{z}^2}{2} +\cdots . \end{aligned}$$

From Eq. (7.15), we obtained the value of \(g_{20}\), \(g_{11}\), \(g_{02}\) and \(g_{21}\) which is given in Sect. 4.

To compute \(g_{21}\), we have to compute the values of \(W_{20}^{(l)}(\theta )\) and \(W_{11}^{(l)}(\theta )\), for \(l=1,2,3.\)

Now, we denote \( W_{20}(\theta ) {=} (W_{20}^{(1)}(\theta ){,}W_{20}^{(2)}(\theta ){,}W_{20}^{(3)}(\theta ))^T \) and \( W_{11}(\theta ) {=} (W_{11}^{(1)}(\theta ),W_{11}^{(2)}(\theta ),W_{11}^{(3)}(\theta ))^T \).

By computing, we obtained

$$\begin{aligned} \begin{aligned} W_{20}(\theta )&=-\frac{g_{20}}{i\omega _0\tau ^*} q(\theta ) - \frac{\overline{g}_{02}}{3i\omega _0\tau ^*} \overline{q}(\theta )\\&\quad + E_1 \mathrm{e}^{2i\omega _0\tau ^*\theta }, \end{aligned} \end{aligned}$$
(7.16)

and

$$\begin{aligned} \begin{aligned} W_{11}(\theta )&=\frac{g_{11}}{i\omega _0\tau ^*} q(0) \mathrm{e}^{i\omega _0\tau ^*\theta }\\&\quad - \frac{\overline{g}_{11}}{i\omega _0\tau ^*} \overline{q}(0) \mathrm{e}^{-i\omega _0\tau ^*\theta } + E_2. \end{aligned} \end{aligned}$$
(7.17)

Here, \( E_1 = (E_1^{(1)},E_1^{(2)},E_1^{(3)}) \) and \( E_2 = (E_2^{(1)},E_2^{(2)},E_2^{(3)}) \in \mathrm{Re}^3\) are the constant vectors, which we have to be determined.

Now using [61], we have

$$\begin{aligned} E_1= \frac{2}{M_1} \left( \begin{array}{c} -\frac{r}{K}-\frac{w_1\sigma _2}{a} \\ \frac{\sigma _2w_2\mathrm{e}^{-i\omega _0\tau ^*}}{a}-\frac{\sigma _2\sigma _3w_3}{c} \\ \frac{\sigma _2\sigma _3w_4\mathrm{e}^{-i\omega _0\tau ^*}}{c} \end{array}\right) . \end{aligned}$$

Solve this system for \(E_1\), we obtained

$$\begin{aligned} E_{1}^{(1)}= & {} \frac{2}{M_1} \left| \begin{array}{ccc} -\frac{r}{K}-\frac{w_1\sigma _2}{a} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)}&{}\quad 0 \\ \frac{\sigma _2w_2\mathrm{e}^{-i\omega _0\tau ^*}}{a}-\frac{\sigma _2\sigma _3w_3}{c} &{}\quad 2i\omega _0-\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2}\\ \frac{\sigma _2\sigma _3w_4\mathrm{e}^{-i\omega _0\tau ^*}}{c} &{}\quad -\mathrm{e}^{-2i\omega _0\tau ^*}\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad 2i\omega _0+\mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right| ,\\ E_{1}^{(2)}= & {} \frac{2}{M_1} \left| \begin{array}{ccc} 2i\omega _0+\frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad -\frac{r}{K}-\frac{w_1\sigma _2}{a} &{}\quad 0 \\ \mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad \frac{\sigma _2w_2\mathrm{e}^{-i\omega _0\tau ^*}}{a}-\frac{\sigma _2\sigma _3w_3}{c} &{}\quad \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{}\quad \frac{\sigma _2\sigma _3w_4\mathrm{e}^{-i\omega _0\tau ^*}}{c} &{}\quad 2i\omega _0+\mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right| , \end{aligned}$$

and

$$\begin{aligned} E_{1}^{(3)}=\frac{2}{M_1} \left| \begin{array}{ccc} 2i\omega _0+\frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)} &{}\quad -\frac{r}{K}-\frac{w_1\sigma _2}{a} \\ \mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad 2i\omega _0-\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{\sigma _2w_2\mathrm{e}^{-i\omega _0\tau ^*}}{a}-\frac{\sigma _2\sigma _3w_3}{c} \\ 0 &{}\quad -\mathrm{e}^{-2i\omega _0\tau ^*}\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{\sigma _2\sigma _3w_4\mathrm{e}^{-i\omega _0\tau ^*}}{c} \end{array}\right| , \end{aligned}$$

where

$$\begin{aligned} M_1=\left( \begin{array}{ccc} 2i\omega _0+\frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)} &{}\quad 0 \\ \mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad 2i\omega _0-\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{}\quad -\mathrm{e}^{-2i\omega _0\tau ^*}\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad 2i\omega _0+\mathrm{e}^{-2i\omega _0\tau ^*}\frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right) . \end{aligned}$$

Similarly, we have

$$\begin{aligned} E_2= \frac{2}{M_2} \left( \begin{array}{c} -\frac{r}{K} - \frac{w_1}{a}Re(\sigma _2) \\ \frac{w_2}{a}(\sigma _2\mathrm{e}^{i\omega _0\tau ^*}+\overline{\sigma }_2\mathrm{e}^{-i\omega _0\tau ^*}) -\frac{w_3}{c}Re(\sigma _2\overline{\sigma }_3) \\ \frac{w_4}{c}(\sigma _2\overline{\sigma }_3\mathrm{e}^{-i\omega _0\tau ^*}+\overline{\sigma }_2\sigma _3\mathrm{e}^{i\omega _0\tau ^*}) \end{array}\right) . \end{aligned}$$

Solve this system for \(E_2\), we obtained

$$\begin{aligned} E_{2}^{(1)}= & {} \frac{2}{M_2} \left| \begin{array}{ccc} -\frac{r}{K}-\frac{w_1}{a}Re(\sigma _2) &{}\quad \frac{w_1N^*}{(jN^{*2}+a)} &{}\quad 0 \\ \frac{w_2}{a}(\sigma _2\mathrm{e}^{i\omega _0\tau ^*} +\overline{\sigma }_2\mathrm{e}^{-i\omega _0\tau ^*}) -\frac{w_3}{c}Re(\sigma _2\overline{\sigma }_3) &{}\quad -\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ \frac{w_4}{c}(\sigma _2\overline{\sigma }_3\mathrm{e}^{-i\omega _0\tau ^*}+\overline{\sigma }_2\sigma _3\mathrm{e}^{i\omega _0\tau ^*}) &{}\quad -\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right| ,\\ E_{2}^{(2)}= & {} \frac{2}{M_2} \left| \begin{array}{ccc} \frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad -\frac{r}{K}-\frac{w_1}{a}Re(\sigma _2) &{}\quad 0 \\ \frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad \frac{w_2}{a}(\sigma _2\mathrm{e}^{i\omega _0\tau ^*}+\overline{\sigma }_2\mathrm{e}^{-i\omega _0\tau ^*}) -\frac{w_3}{c}Re(\sigma _2\overline{\sigma }_3) &{} \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{} \frac{w_4}{c}(\sigma _2\overline{\sigma }_3\mathrm{e}^{-i\omega _0\tau ^*}+\overline{\sigma }_2\sigma _3\mathrm{e}^{i\omega _0\tau ^*}) &{} \frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right| , \end{aligned}$$

and

$$\begin{aligned} E_{2}^{(3)}=\frac{2}{M_2} \left| \begin{array}{ccc} \frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)} &{}\quad -\frac{r}{K}-\frac{w_1}{a}\mathrm{Re}(\sigma _2) \\ \frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad -\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{w_2}{a}(\sigma _2\mathrm{e}^{i\omega _0\tau ^*}+\overline{\sigma }_2\mathrm{e}^{-i\omega _0\tau ^*})-\frac{w_3}{c}\mathrm{Re}(\sigma _2\overline{\sigma }_3) \\ 0 &{}\quad -\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{w_4}{c}(\sigma _2\overline{\sigma }_3\mathrm{e}^{-i\omega _0\tau ^*}+\overline{\sigma }_2\sigma _3\mathrm{e}^{i\omega _0\tau ^*}) \end{array}\right| , \end{aligned}$$

where

$$\begin{aligned} M_2=\left( \begin{array}{ccc} \frac{rN^*}{K}-\frac{2jw_1N^{*2}P^*}{(jN^{*2}+a)^2} &{}\quad \frac{w_1N^*}{(jN^{*2}+a)} &{}\quad 0 \\ \frac{w_2P^*(jN^{*2}-a)}{(jN^{*2}+a)^2} &{}\quad -\frac{w_3P^*Z^*}{(P^*+bZ^*+c)^2} &{} \frac{(P^*+c)w_3P^*}{(P^*+bZ^*+c)^2} \\ 0 &{}\quad -\frac{(bZ^*+c)w_4Z^*}{(P^*+bZ^*+c)^2} &{}\quad \frac{w_4bP^*Z^*}{(P^*+bZ^*+c)^2} \end{array}\right) . \end{aligned}$$

Consequently, we determine the value of \( W_{20}(\theta ) \) and \( W_{11}(\theta ) \) from Eqs. (7.16) and (7.17). The value of \( g_{21} \) can be expressed by delay and parameters [Eq. (4.1)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, N.K., Ojha, A., Jana, D. et al. Modeling the plankton–fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn 100, 4003–4029 (2020). https://doi.org/10.1007/s11071-020-05688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05688-2

Keywords

Navigation