Log in

A p-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist I

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

In this paper, we develop an integral refinement of the Perrin-Riou theory of exponential maps. We also formulate the Perrin-Riou theory for anticyclotomic deformation of modular forms in terms of the theory of the Serre–Tate local moduli and interpolate generalized Heegner cycles p-adically.

Résumé

Dans cet article, nous développons un raffinement entier de la théorie des applications exponentielles de Perrin- Riou. Nous formulons également la théorie de Perrin-Riou pour les déformations anticyclotomiques de formes modulaires en utilisant la théorie des modules locaux de Serre- Tate et nous interpolons p-adiquement les cycles de Heegner généralisés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Amice, J. Vélu: Distributions \(p\)-adiques associées aux séries de Hecke. Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), pp. 119–131. Asterisque, Nos. 24-25, Soc. Math. France, Paris, 1975.

  2. M. Bertolini, H. Darmon, K. Prasanna: Generalized Heegner cycles and \(p\)-adic Rankin \(L\)-series. With an appendix by Brian Conrad. Duke Math. J. 162 (2013), no. 6, 1033–1148.

  3. K. Büyükboduk, A. Lei: Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes, to appear in International Mathematics Research Notices.

  4. M. Brakočević: Anticyclotomic \(p\)-adic \(L\)-function of central critical Rankin-Selberg L-value. Int. Math. Res. Not. IMRN 2011, no. 21, 4967–5018

    MathSciNet  MATH  Google Scholar 

  5. J. Coates, R. Greenberg: Kummer theory for abelian varieties over local fields. Invent math 124, 129–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Castella, M-L. Hsieh: Heegner cycles and \(p\)-adic \(L\)-functions, Math. Ann. 370 (2018), no. 1-2, 567–628.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Coleman: Local units modulo circular units. Proc. Amer. Math. Soc. 89 (1983), no. 1, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Colmez: Théorie d’Iwasawa des représentations de de Rham d’un corps local. Ann. of Math. (2) 148 (1998), no. 2, 485–571.

  9. J. Coates, A. Wiles: A. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223–251.

  10. D. Cox: Primes of the form \(x^2+ny^2\). Fermat, class field theory and complex multiplication. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989. xiv+351 pp.

  11. C. Deninger: Higher regulators and Hecke \(L\)-series of imaginary quadratic fields. I. Invent. Math. 96 (1989), no. 1, 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. de Shalit: Iwasawa theory of elliptic curves with complex multiplication, Academic Press (1987).

  13. E. Ghate: On the Local Behavior of Ordinary Modular Galois Representations, in Modular Curves and Abelian Varieties, Progress in Mathematics, Vol. 224, 105–124.

  14. P. Gille, L. Moret-Bailly: Actions algébriques de groupes arithmétiques. Torsors, étale homotopy and applications to rational points, 231–249, London Math. Soc. Lecture Note Ser., 405, Cambridge Univ. Press, Cambridge, 2013.

  15. C. Goldstein, N. Schappacher Séries d’Eisenstein et fonctions L de courbes elliptiques à multiplication complexe. J. Reine Angew. Math. 327 (1981), 184–218.

  16. C. Greither: Class groups of abelian fields, and the main conjecture. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Gross: Arithmetic on elliptic curves with complex multiplication. With an appendix by B. Mazur. Lecture Notes in Mathematics, 776. Springer, Berlin, 1980. iii+95 pp.

  18. T. Honda: On the theory of commutative formal groups. J. Math. Soc. Japan 22 (1970), 213–246.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Jetchev, D. Loeffler, S. Zerbes: Heegner points in Coleman families. Proc. Lond. Math. Soc. (3) 122 (2021), no. 1, 124–152.

  20. N. Katz:The Eisenstein measure and \(p\)-adic interpolation. Amer. J. Math. 99 (1977), no. 2, 238–311.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Katz: Serre-Tate local moduli. Algebraic surfaces (Orsay, 1976-78), pp. 138–202, Lecture Notes in Math., 868, Springer, Berlin-New York, 1981.

  22. S. Kobayashi: Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152 (2003), no. 1, 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Kobayashi: The \(p\)-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math. 191 (2013), no. 3, 527–629.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Kobayashi: A \(p\)-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist II, in preparation.

  25. S. Kobayashi, K. Ota: Anticyclotomic main conjecture for modular forms and integral Perrin-Riou twists, Advanced Studies in Pure Mathematics, Development of Iwasawa Theory - the Centennial of K. Iwasawa’s Birth, vol.86, 537-594, 2020.

    MATH  Google Scholar 

  26. A. Lei, D. Loeffler, S. Zerbes: Euler systems for Rankin-Selberg convolutions of modular forms. Ann. of Math. (2) 180 (2014), no. 2, 653–771

  27. D. Loeffler, C. Skinner, S. Zerbes: Syntomic regulators of Asai-Flach classes. In Development of Iwasawa Theory - the Centennial of K. Iwasawa’s Birth, vol. 86 of Adv. Stud. Pure Math., Math. Soc. Japan, 2020, 595–638.

  28. D. Loeffler, S. Zerbes: Rankin-Eisenstein classes in Coleman families. Res. Math. Sci. 3 (2016), Paper No. 29, 53 pp.

  29. J. Nekovář: Kolyvagin’s method for Chow groups of Kuga-Sato varieties. Invent. Math. 107 (1992), no. 1, 99–125.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Nekovář: On \(p\)-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, 127–202, Progr. Math., 108, Birkhäuser Boston, Boston, MA, 1993.

  31. J. Nekovář: On the \(p\)-adic height of Heegner cycles. Math. Ann. 302 (1995), no. 4, 609–686.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Perrin-Riou: Fonctions \(L\)\(p\)-adiques, théorie d’Iwasawa et points de Heegner. Bull. Soc. Math. France 115 (1987), no. 4, 399–456.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Perrin-Riou: Théorie d’Iwasawa des représentations \(p\)-adiques sur un corps local, Invent. Math. 115 (1994), 81–149.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Perrin-Riou: Fonctions \(L\)\(p\)-adiques des représentations \(p\)-adiques. Astérisque No. 229 (1995), 198 pp.

  35. B. Perrin-Riou: Théorie d’Iwasawa et loi explicite de réciprocité. Doc. Math. 4 (1999), 219–273.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Rohrlich: On the \(L\)-functions of canonical Hecke characters of imaginary quadratic fields. Duke Math. J. 47 (1980), no. 3, 547–557.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Rubin: Euler systems. Annals of Mathematics Studies, 147. Hermann Weyl Lectures. The Institute for Advanced Study. Princeton University Press, Princeton, NJ, 2000. xii+227 pp.

  38. J-P. Serre, J. Tate: Good reduction of abelian varieties. Ann. of Math. (2) 88 1968 492–517.

  39. A. Scholl: Motives for modular forms. Invent. Math. 100 (1990), no. 2, 419–430.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Višik: Nonarchimedean measures associated with Dirichlet series. Mat. Sb. (N.S.) 99 (141) (1976), no. 2, 248–260, 296.

  41. T. Yang: On CM abelian varieties over imaginary quadratic fields. Math. Ann. 329 (2004), no. 1, 87–117.

    Article  MathSciNet  MATH  Google Scholar 

  42. J-K. Yu: On the moduli of quasi-canonical liftings. Compositio Math. 96 (1995), no. 3, 293–321.

  43. S. Zhang: On explicit reciprocity law over formal groups. Int. J. Math. Math. Sci. 2004, no. 9-12, 607–635.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Ashay Burungale and Kazuto Ota for their valuable comments. He also thanks Ming-Lun Hsieh for answering questions for [6]. He is very grateful to the anonymous referees for their sharp comments and appropriate advice, which improved the exposition significantly. A part of the work in this paper was obtained in 2013 and 2014 when the author was visiting Jan Nekovář at Paris 6 University. He would like to dedicate this paper to his memory. He also thanks Henri Darmon, Adrian Iovita and Antonio Lei for giving him the opportunity to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by KAKENHI (25707001, 17H02836, 22H00096)

French abstract corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, S. A p-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist I. Ann. Math. Québec 47, 73–116 (2023). https://doi.org/10.1007/s40316-023-00213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-023-00213-4

Mathematics Subject Classification

Navigation