Log in

Extended graph 4-manifolds, and Einstein metrics

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We show that extended graph 4-manifolds (as defined by Frigerio–Lafont–Sisto in [12]) do not support Einstein metrics.

Résumé

Nous montrons que les variétés grapheés généralisées de dimension 4 (définies par Frigerio–Lafont–Sisto dans [12]) n’admettent aucune métrique d’Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Anderson. Dehn filling and Einstein metrics in higher dimensions. J. Differential Geom. 73 (2006), no. 2, 219-261.

    Article  MathSciNet  Google Scholar 

  2. C. S. Aravinda, T. Farrell. Twisted doubles and nonpositive curvature. Bull. Lond. Math. Soc. 41 (2009), 1053-1059.

    Article  MathSciNet  Google Scholar 

  3. A. Besse. Einstein manifolds. Springer-Verlag, Berlin 1987.

    Book  Google Scholar 

  4. G. Besson, G. Courtois, S. Gallot. Entropies and rigidités des espaces localment symétriques de curbure strictment négative. Geom. Func. Anal, 5 (1995), 731-799.

    Article  Google Scholar 

  5. O. Biquard. Métriques d’Einstein à cusps et équations de Seiberg-Witten. J. Reine Angew. Math. 490 (1997), 129-154.

    MathSciNet  Google Scholar 

  6. J. Cheeger, M. Gromov. Bounds on the von Neumann dimension of \(L^2\)-cohomology and the Gauss-Bonnet theorem for open manifolds. J. Differential Geom. 21 (1985), no. 1, 1-34.

    Article  MathSciNet  Google Scholar 

  7. C. Connell, P. Suárez-Serrato. On higher graph manifolds. Int. Math. Res. Not (2019), no. 5, 1281-1311.

  8. L. F. Di Cerbo. Finite-volume complex surfaces without cuspidal Einstein metrics. Ann. Global Anal. Geom. 41 (2012), no. 3, 371-380.

    Article  MathSciNet  Google Scholar 

  9. L. F. Di Cerbo. Seiberg-Witten equations on surfaces of logarithmic general type. Internat. J. Math. 24 (2013), no. 9, 1350074 (23 pages).

  10. M. P. do Carmo. Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992.

  11. J. Fine, B. Premoselli. Examples of compact Einstein four-manifolds with negative curvature. J. Amer. Math. Soc. 33 (2020), 991-1038.

    Article  MathSciNet  Google Scholar 

  12. R. Frigerio, J.-F. Lafont, A. Sisto. Rigidity of High Dimensional Graph Manifolds. Astérisque Volume 372, 2015.

  13. M. Gromov. Volume and bounded cohomology. Publ. Math. IHES 56 (1982), 5-99.

    MathSciNet  Google Scholar 

  14. G. Harder. A Gauss-Bonnet formula for discrete arithmetically defined groups. Ann. Sci. École Normale Sup. 4 (1971), 409-455.

    Article  MathSciNet  Google Scholar 

  15. E. Heintze. Mannigfaltigkeiten negativer Krümmung. Habilitationsschrift, Univerität Bonn, 1976.

    Google Scholar 

  16. N. Hitchin. On compact four-dimensional Einstein manifolds. J. Differential Geom. 9 (1974), 435-442.

    Article  MathSciNet  Google Scholar 

  17. D. Kotschick. On the Gromov-Hitchin-Thorpe inequality. C. R. Acad. Sci. Paris 326 (1998), 727-731.

    Article  ADS  MathSciNet  Google Scholar 

  18. C. LeBrun. Four-manifolds without Einstein metrics. Math. Res. Lett. 3 (1996), 133-147.

    Article  MathSciNet  Google Scholar 

  19. C. LeBrun. Kodaira dimension and the Yamabe problem. Comm. Anal. Geom. 7 (1998), 133-156.

    Article  MathSciNet  Google Scholar 

  20. C. LeBrun. Four-dimensional Einstein manifolds, and beyond. Surveys in differential geometry: essays on Einstein manifolds, 247–285, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999.

  21. Essays on Einstein manifolds. Editors C. LeBrun and M. Wang. Surveys in Differential Geometry, Volume 6 (2001).

  22. J. Lott, B. Kleiner. Notes on Perelman’s papers. Geom. Topol. 12 (2008), no. 5, 2587-2855.

    Article  MathSciNet  Google Scholar 

  23. A. Manning. Topological entropy for geodesic flows. Ann. of Math. (2) 110 (1979), no. 3, 567-573.

  24. J. Milnor. A note on curvature and the fundamental group. J. Differential Geom. 2 (1968), 1-7.

    Article  MathSciNet  Google Scholar 

  25. P. Ontaneda. The double of a hyperbolic manifold and non-positively curved exotic PL structures. Trans. Amer. Math. Soc. 355 (2002), no. 3, 935-965.

    Article  MathSciNet  Google Scholar 

  26. P. Petersen. Riemannian Geometry. Third edition. Graduate Texts in Mathematics, 171. Springer, Cham, 2016. xviii+499 pp.

  27. E. Pieroni. Minimal entropy of \(3\)-manifolds. PhD Thesis, University of Rome “La Sapienza”, 2018.

  28. Y. Rollin. Surfaces Kählériennes de volume fini et équationes de Seiberg-Witten. Bull. Soc. Math. France (3) 130 (2002), 409-456.

  29. A. Sambusetti. An obstruction to the existence of Einstein metric on \(4\)-manifolds. Math. Annalen 311 (1998), 533-547.

    Article  MathSciNet  Google Scholar 

  30. J. Souto. Minimal volume and minimal entropy. PhD Thesis - Part II, Bonn University, 2001.

Download references

Acknowledgements

The author would like to thank Professor Claude LeBrun for useful comments on an earlier version of this manuscript, and for generously sharing his knowledge of the subject over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca F. Di Cerbo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by NSF Grant DMS-2104662.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Cerbo, L.F. Extended graph 4-manifolds, and Einstein metrics. Ann. Math. Québec 48, 269–276 (2024). https://doi.org/10.1007/s40316-021-00192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00192-4

Keywords

Mathematics Subject Classification

Navigation