Log in

Newton polygons of Hecke operators

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator \(T_2\) for all large enough weights. We first develop a formula for computing p-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at \(n\le 15\), then it agrees with the Newton polygon of \(T_2\) up to n.

Résumé

Dans cet article, nous vérifions une version tronquée de la conjecture de Buzzard–Calegari concernant le polygone de Newton de l’opérateur Hecke \(T_2\) pour tous les poids suffisamment grands. Nous développons d’abord une formule pour les valuations p-adiques de sommes exponentielles, que nous utilisons ensuite pour calculer les valuations 2-adiques des traces d’opérateurs de Hecke agissant sur des espaces de formes cuspidales. Enfin, nous vérifions que si le polygone de Newton du polynôme de Buzzard–Calegari a un sommet en \(n\le 15\), alors il coïncide avec le polygone de Newton de \(T_2\) jusqu’à n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baba, S., Murty, R.: Irreducibility of Hecke polynomials. Math. Res. Lett. 10, 709–715 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bergdall, J., Pollack, R.: Slopes of modular forms and the ghost conjecture. Int. Math. Res. Not. 20, 1125–1144 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bombieri, E., Katz, N.: A note on lower bounds for Frobenius traces. Enseign. Math. (2) 56(3–4), 203–227 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brown, B., Calkin, N.J., Flowers, T.B., James, K., Smith, E., Stout, A.: Elliptic curves, modular forms, and sums of Hurwitz class numbers. J. Number Theory 128, 1847–1863 (2008)

    Article  MathSciNet  Google Scholar 

  5. Buzzard, K.: Questions about slopes of modular forms, no. 298. Automorphic forms. I, pp 1–15 (2005)

  6. Buzzard, K., Calegari, F.: Slopes of overconvergent 2-adic modular forms. Compos. Math. 141, 591–604 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chiriac, L., Jorza, A.: Data related to Newton polygons of Hecke operators. https://web.pdx.edu/~chiriac/data/traces.html

  8. Emerton, M.: 2-adic modular forms of minimal slope. PhD thesis, Harvard University (1998)

  9. Ghitza, A., McAndrew, A.: Experimental evidence for Maeda’s conjecture on modular forms. Tbil. Math. J. 5, 55–69 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Hatada, K.: Eigenvalues of Hecke operators on \({\rm SL}(2,\,{\bf Z})\). Math. Ann. 239, 75–96 (1979)

    Article  MathSciNet  Google Scholar 

  11. Hida, H., Maeda, Y.: Non-abelian base change for totally real fields, no. Special Issue. Olga Taussky-Todd: in memoriam, pp 189–217 (1997)

  12. Knightly, A., Li, C.: Traces of Hecke Operators, vol. 133 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2006)

    Book  Google Scholar 

  13. Liu, R., Wan, D., **ao, L.: The eigencurve over the boundary of weight space. Duke Math. J. 166, 1739–1787 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lygeros, N., Rozier, O.: A new solution to the equation \(\tau (p)\equiv 0 \,({\rm mod} \, p)\). J. Integer Seq. 13, 11 (2010)

    MATH  Google Scholar 

  15. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.7) (2019). https://www.sagemath.org

  16. Schlickewei, H.P.: The number of subspaces occurring in the \(p\)-adic subspace theorem in Diophantine approximation. J. Reine Angew. Math. 406, 44–108 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Vonk, J.: Computing overconvergent forms for small primes. LMS J. Comput. Math. 18(1), 250–257 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wan, D.: Dimension variation of classical and \(p\) -adic modular forms. Invent. Math. 133(2), 449–463 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Damien Roy for many useful suggestions, and especially for showing us the proof of Proposition 7, to the anonymous referee for encouraging us to work out the relationship between the Newton polygons of \(P_{T_2}\) and its truncation, and to John Bergdall for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liubomir Chiriac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: 2-adic valuations of the traces of \(T_2\)

Appendix: 2-adic valuations of the traces of \(T_2\)

In the following table, for each \(n\le 5\) we make explicit the terms that appear in \(v_2({\text {Tr}}(\wedge ^n T_p|S_{2k}))\) from Theorem 12, and those defining the sequence \(a_n\) from Eq. (3) in Sect. 5. The 2-adic numbers \(\Omega _i\) are given modulo \(2^{50}\).

The complete table for all \(n\le 15\) is available online [7].

n

\(v_2(k-\Omega _i)\) or \(\min (n_j, 2 v_2(k-u_j))\) in \(v_2({\text {Tr}}(\wedge ^n T_2|S_{2k}))\)

\(v_2(k-\ell )\) in \(a_n\)

\(v_2(\Omega _i-\ell )\) or \(v_2(u_j-\ell )\)

1

\(v_2(k- 442980431217671)\)

\(v_2(k-7)\)

10

2

\(v_2(k-791247700865546)\)

\(v_2(k-10)\)

9

\(v_2(k-31828396041227)\)

\(v_2(k-11)\)

10

\(v_2(k-335062469580877)\)

\(v_2(k-13)\)

6

3

\(v_2(k-48255093739981)\)

\(v_2(k-13)\)

6

\(v_2(k-895017375933454)\)

\(v_2(k-14)\)

10

\(v_2(k-16843008520207)\)

\(v_2(k-15)\)

12

\(v_2(k-250702637217616)\)

\(v_2(k-16)\)

6

\(v_2(k-46624142875857)\)

\(v_2(k-17)\)

6

\(v_2(k-474794944364563)\)

\(v_2(k-19)\)

28

4

\(v_2(k-798532487856848)\)

\(v_2(k-16)\)

6

\(v_2(k-658899949170001)\)

\(v_2(k-17)\)

6

\(v_2(k-568752135614482)\)

\(v_2(k-18)\)

12

\(\min (15, 2 \cdot v_2(k - 19))\)

\(2\cdot v_2(k-19)\)

\(\infty \)

\(v_2(k-1103383114654676)\)

\(v_2(k-20)\)

6

\(v_2(k-60661288646421)\)

\(v_2(k-21)\)

8

\(v_2(k-1080512839942166)\)

\(v_2(k-22)\)

31

\(v_2(k-339362545926167)\)

\(v_2(k-23)\)

33

\(v_2(k-824086375843865)\)

\(v_2(k-25)\)

11

5

\(v_2(k-912948839579667)\)

\(v_2(k-19)\)

19

\(v_2(k-929666093061716)\)

\(v_2(k-20)\)

6

\(v_2(k-1090275108829461)\)

\(v_2(k-21)\)

8

\(\min (15, 2 \cdot v_2(k - 22))\)

\(2\cdot v_2(k-22)\)

\(\infty \)

\(\min (16, 2 \cdot v_2(k - 151))\)

\(2\cdot v_2(k-23)\)

7

\(v_2(k-215022683507480)\)

\(v_2(k-24)\)

8

\(v_2(k-188349340154137)\)

\(v_2(k-25)\)

8

\(v_2(k-25411498307609)\)

\(v_2(k-25)\)

12

\(v_2(k-255292856074266)\)

\(v_2(k-26)\)

36

\(v_2(k-893284478091291)\)

\(v_2(k-27)\)

36

\(v_2(k-378319707637788)\)

\(v_2(k-28)\)

11

\(v_2(k-436532622338077)\)

\(v_2(k-29)\)

11

\(v_2(k-669602715533343)\)

\(v_2(k-31)\)

27

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiriac, L., Jorza, A. Newton polygons of Hecke operators. Ann. Math. Québec 45, 271–290 (2021). https://doi.org/10.1007/s40316-020-00149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-020-00149-z

Keywords

Mathematics Subject Classification

Navigation