Log in

Inflated beta autoregressive moving average models

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the inflated beta autoregressive moving average (I\(\beta \)ARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RH time series is publicly available on the Brazilian National Institute of Meteorology (INMET) website and the UV data is available on the Operador Nacional do Sistema Elétrico (ONS) website.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    MathSciNet  MATH  Google Scholar 

  • Bayer FM, Bayer DM, Pumi G (2017) Kumaraswamy autoregressive moving average models for doubled bounded environmental data. J Hydrol 555:385–396

    Google Scholar 

  • Bayer FM, Cintra RJ, Cribari-Neto F (2018) Beta seasonal autoregressive moving average models. J Stat Comput Simul 88(15):2961–2981

    MathSciNet  MATH  Google Scholar 

  • Bayer FM, Bayer DM, Marinoni A, Gamba P (2020) A novel Rayleigh dynamical model for remote sensing data interpretation. IEEE Trans Geosci Remote Sens 58(7):4989–4999

    Google Scholar 

  • Bayes CL, Valdivieso L (2016) A beta inflated mean regression model for fractional response variables. J Appl Stat 43(10):1814–1830

    MathSciNet  MATH  Google Scholar 

  • Benjamin MA, Rigby RA, Stasinopoulos DM (2003) Generalized autoregressive moving average models. J Am Stat Assoc 98(461):214–223

    MathSciNet  MATH  Google Scholar 

  • Bloomfield P (2013) Fourier analysis of time series: an introduction, 2nd edn. Wiley-Interscience, New Jersey, p 288

    Google Scholar 

  • Box G, Jenkins GM, Reinsel G, Ljung GM (2015) Time series analysis: forecasting and control, 5th edn. Wiley, Hardcover

    MATH  Google Scholar 

  • Brazilian National Institute of Meteorology (INMET) (2018) Meteorological database for research and teaching. http://www.inmet.gov.br/projetos/rede/pesquisa. Accessed Oct 2018

  • Chuang M-D, Yu G-H (2007) Order series method for forecasting non-Gaussian time series. J Forecast 26(4):239–250

    MathSciNet  Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62(2):69–76

    MathSciNet  Google Scholar 

  • Cox DR (1981) Statistical analysis of time series: some recent developments. Scand J Stat 8:93–115

    MathSciNet  MATH  Google Scholar 

  • da-Silva CQ, Migon HS, Correia LT (2011) Dynamic bayesian beta models. Comput Stat Data Anal 55(6):2074–2089

  • Fahrmeir L (1987) Asymptotic testing theory for generalized linear models. Statistics 18(1):65–76

    MathSciNet  MATH  Google Scholar 

  • Fahrmeir L, Kaufmann H (1985) Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann Stat 13(1):342–368

    MathSciNet  MATH  Google Scholar 

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815

    MathSciNet  MATH  Google Scholar 

  • Fokianos K, Kedem B (1998) Prediction and classification of non-stationary categorical time series. J Multivar Anal 67(2):277–296

    MathSciNet  MATH  Google Scholar 

  • Fokianos K, Kedem B (2004) Partial likelihood inference for time series following generalized linear models. J Time Ser Anal 25(2):173–197

    MathSciNet  MATH  Google Scholar 

  • Grassly NC, Fraser C (2006) Seasonal infectious disease epidemiology. Proc R Soc Lond B: Biol Sci 273(1600):2541–2550

    Google Scholar 

  • Guolo A, Varin C (2014) Beta regression for time series analysis of bounded data, with application to Canada Google Flu Trends. Ann Appl Stat 8(1):74–88

    MathSciNet  MATH  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J R Stat Soc Ser B 41(2):190–195

    MathSciNet  MATH  Google Scholar 

  • Kedem B, Fokianos K (2002) Regression models for time series analysis. Wiley, New Jersey

    MATH  Google Scholar 

  • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    MATH  Google Scholar 

  • Li WK (1991) Testing model adequacy for some Markov regression models for time series. Biometrika 78(1):83–89

    MathSciNet  MATH  Google Scholar 

  • Li WK (1994) Time series models based on generalized linear models: some further results. Biometrics 50(2):506–511

    MATH  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303

    MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

  • Melchior C, Zanini RR, Guerra RR, Rockenbach DA (2021) Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches. Int J Forecast 37(2):825–837

    Google Scholar 

  • Monti AC (1994) A proposal for a residual autocorrelation test in linear models. Biometrika 81(4):776–780

    MathSciNet  MATH  Google Scholar 

  • Neyman J, Pearson ES (1928) On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A(1/2):175–240

    MATH  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  • Operador Nacional do Sistema Elétrico (2022) Dados Hidrológicos. http://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/dados_hidrologicos_volumes.aspx. Accessed Dec 2022

  • Ospina R, Ferrari SLP (2012) A general class of zero-or-one inflated beta regression models. Comput Stat Data Anal 56(6):1609–1623

    MathSciNet  MATH  Google Scholar 

  • Palm BG, Bayer FM, Cintra RJ (2021) Signal detection and inference based on the beta binomial autoregressive moving average model. Digital Signal Process 109:102911

    Google Scholar 

  • Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford Science publications, New York

  • Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Pumi G, Valk M, Bisognin C, Bayer FM, Prass TS (2019) Beta autoregressive fractionally integrated moving average models. J Stat Plann Inference 200:196–202

    MathSciNet  MATH  Google Scholar 

  • Pumi G, Prass TS, Souza RR (2021) A dynamic model for double-bounded time series with chaotic-driven conditional averages. Scand J Stat 48(1):68–86

    MathSciNet  MATH  Google Scholar 

  • R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). R Foundation for Statistical Computing

  • Rao CR (1948) Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math Proc Cambridge Philos Soc 44(1):50–57

    MathSciNet  MATH  Google Scholar 

  • Rocha AV, Cribari-Neto F (2009) Beta autoregressive moving average models. TEST 18(3):529–545

    MathSciNet  MATH  Google Scholar 

  • Rocha AV, Cribari-Neto F (2017) Erratum to: beta autoregressive moving average models. TEST 26(2):451–459

    MathSciNet  MATH  Google Scholar 

  • Sagrillo M, Guerra RR, Bayer FM (2021) Modified Kumaraswamy distributions for double bounded hydro-environmental data. J Hydrol 603:127021

    Google Scholar 

  • Scher VT, Cribari-Neto F, Pumi G, Bayer FM (2020) Goodness-of-fit tests for \(\beta \)ARMA hydrological time series modeling. Environmetrics 31(3):2607

    MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    MathSciNet  MATH  Google Scholar 

  • Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie A, Viboud C (2013) Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog 9(3):1003194

    Google Scholar 

  • Terrell GR (2002) The gradient statistic. Comput Sci Stat 34:206–215

    Google Scholar 

  • Tiku ML, Wong W-K, Vaughan DC, Bian G (2000) Time series models in non-normal situations: symmetric innovations. J Time Ser Anal 21(5):571–596

    MathSciNet  MATH  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    MathSciNet  MATH  Google Scholar 

  • Zeger SL, Qaqish B (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics 44(4):1019–1031

    MathSciNet  MATH  Google Scholar 

  • Zheng T, **ao H, Chen R (2015) Generalized ARMA models with martingale difference errors. J Econometr 189(2):492–506

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge partial financial support from CNPq and FAPERGS, Brazil. The comments and suggestions of the anonymous referee and the Associated Editor are gratefully acknowledged.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (310617/2020-0) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (21/2551-0002048-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio M. Bayer.

Additional information

Communicated by Clémentine Prieur.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Score vector and cumulative partial information matrix

Appendix A Score vector and cumulative partial information matrix

In this appendix, we shall derive the partial score vector and the cumulative partial information matrix from (5). These are useful for the asymptotic theory and inference as well as numerical considerations.

1.1 A.1 Score vector and optimization algorithm

To obtain the partial score vector, we shall need to obtain the derivative of the log-likelihood \(\ell (\varvec{\gamma })\) given in (5) with respect to each coordinate \(\gamma _j\), with \(j \in 1,\dots ,\kappa \), of the parameter \(\varvec{\gamma }\). To obtain the derivative of \(\ell (\varvec{\gamma })\) with respect to \(\alpha _i\), \(i=0,1\), observe that, in view of (5),

$$\begin{aligned}\frac{\partial c_t}{\partial \alpha _i}=(\mu _t-1)I_0(i)-\mu _tI_1(i)\quad \text{ and }\quad \frac{\partial \nu _t}{\partial \alpha _i}=\frac{(-1)^i(\alpha _{1-i}-1)(\mu _t-1)\mu _t}{c_t^2}.\end{aligned}$$

Now, for \(i = 0,1\), it is straightforward to show that

$$\begin{aligned} \frac{\partial \ell (\varvec{\gamma })}{\partial \alpha _i} =\sum _{t=m+1}^{n} \frac{\partial \ell _t(\varvec{\gamma })}{\partial \alpha _i}&=\frac{1}{\alpha _i}I_i(y_t)+\bigg (\frac{1}{c_t}\left[ \frac{\partial c_t}{\partial \alpha _i}\right] + \phi (y_t^*-\mu _t^*) \left[ \frac{\partial \nu _t}{\partial \alpha _i}\right] \bigg )I_{(0,1)}(y_t), \end{aligned}$$

where \(y_t^ {*} := \log \Big (\frac{y_t}{1-y_t}\Big ), \quad \mu _t^ {*} :=\psi (\nu _t\phi )-\psi \big ((1-\nu _t)\phi \big )\) and \(\psi :(0,\infty )\rightarrow \mathbb {R}\) is the digamma function defined as \(\psi (z)=\frac{d}{dz}\log \big (\Gamma (z)\big )\). The derivative with respect to \(\phi \) is easy to obtain:

$$\begin{aligned} \frac{\partial \ell (\varvec{\gamma })}{\partial \phi }&=\sum _{t=m+1}^{n} \Big [\nu _t(y_t^*-\mu _t^*)+\log (1-y_t)-\psi \big ((1-\nu _t)\phi \big )+\psi (\phi )\Big ]I_{(0,1)}(y_t). \end{aligned}$$

For the remaining parameters, i.e., for \(j \in 4,\dots ,\kappa \), by the chain rule, and since \(\eta _t=g(\mu _t)\), \(\displaystyle {\frac{d \mu _t}{d \eta _t} = \frac{1}{g'(\mu _t)}}\), so that

$$\begin{aligned} \frac{\partial \ell (\varvec{\gamma })}{\partial \gamma _j} = \sum _{t=m+1}^{n} \frac{1}{g^\prime (\mu _t)}\frac{\partial \ell _t(\varvec{\gamma })}{\partial \mu _t}\frac{\partial \eta _t}{\partial \gamma _j}\,. \end{aligned}$$
(A1)

Observe that \(\frac{\partial \nu _t}{\partial \mu _t}=(\alpha _0-1)(\alpha _1-1)c_t^{-2}\) and

$$\begin{aligned} \frac{\partial \ell _t(\varvec{\gamma })}{\partial \mu _t}&=\bigg (\frac{\alpha _0-\alpha _1}{c_t}+\phi (y_t^*-\mu _t^*)\bigg [\frac{(\alpha _0-1)(\alpha _1-1)}{c_t^2}\bigg ] \bigg )I_{(0,1)}(y_t) \nonumber \\&\quad + \frac{1}{\mu _t}I_1(y_t)-\frac{1}{1-\mu _t}I_0(y_t). \end{aligned}$$
(A2)

Substituting (A2) into expression (A1), we obtain a simple formula that allows the computation of \(\partial \ell (\varvec{\gamma })/\partial \gamma _j\) for each remaining coordinate \(\gamma _j\), by determining the derivatives \(\partial \eta _t/\partial \gamma _j\), a much simpler task. We have

$$\begin{aligned} \frac{\partial \eta _t}{\partial \alpha } =1-\sum _{k=1}^q\theta _k \frac{1}{g^\prime (\mu _{t-k})} \frac{\partial \eta _{t-k}}{\partial \alpha } \quad \text{ and }\quad \frac{\partial \eta _t}{\partial \beta _l} = x_{tl}- \sum _{k=1}^q \theta _k \frac{1}{g^\prime (\mu _{t-k})} \frac{\partial \eta _{t-k}}{\partial \beta _l}, \end{aligned}$$

where \(x_{tl}\) denotes the lth element of \(\varvec{x}_t\), for \(l=1,\dots ,r\). We also have, for \(l=1,\dots ,p\), and \(j=1,\dots ,q\),

$$\begin{aligned} \frac{\partial \eta _t}{\partial \varphi _l}=y_{t-l}- \sum _{k=1}^q \theta _k \frac{1}{g^\prime (\mu _{t-k})} \frac{\partial \eta _{t-k}}{\partial \varphi _l}\quad \text{ and }\quad \frac{\partial \eta _t}{\partial \theta _j}=r_{t-j} - \sum _{k=1}^q \theta _k \frac{1}{g^\prime (\mu _{t-k})} \frac{\partial \eta _{t-k}}{\partial \theta _j}. \end{aligned}$$

Let \(T=\textrm{diag}\big \lbrace 1/g'\left( {\mu }_{m+1}\right) ,\dots , 1/g'\left( {\mu }_{n}\right) \big \rbrace \), \( {{\textbf {a}}}=\left( \frac{\partial \eta _{m+1}}{\partial \alpha },\dots ,\frac{\partial \eta _n}{\partial \alpha }\right) ^\top \) and \(\varvec{v}=\left( \frac{\partial \ell _{m+1}(\varvec{\gamma })}{\partial \mu _{m+1}},\dots ,\frac{\partial \ell _{n}(\varvec{\gamma })}{\partial \mu _{n}}\right) ^\top \). Finally, let R, P, Q be the matrices with dimension \((n-m)\times r\), \((n-m)\times p\) and \((n-m)\times q\), respectively, for which the (ij)th elements are given by

$$\begin{aligned} R_{i,j}=\frac{\partial \eta _{i+m}}{\partial \beta _j}, \quad P_{i,j}=\frac{\partial \eta _{i+m}}{\partial \varphi _j}, \quad \text{ and } \quad Q_{i,j}=\frac{\partial \eta _{i+m}}{\partial \theta _j} \end{aligned}$$

and set \(U_{\alpha }(\varvec{\gamma }):= {{\textbf {a}}}^\top T \varvec{v}\), \(U_{\varvec{\beta }}(\varvec{\gamma }):=R^\top T \varvec{v}\), \(U_{\varvec{\varphi }}(\varvec{\gamma }):=P^\top T \varvec{v}\) and \(U_{\varvec{\theta }}(\varvec{\gamma }):=Q^\top T \varvec{v}\).

For \(U_{\alpha _j}(\varvec{\gamma }):= \frac{\partial \ell (\varvec{\gamma })}{\partial \alpha _j}\), and \(U_{\phi }(\varvec{\gamma }):= \frac{\partial \ell (\varvec{\gamma })}{\partial \phi }\), then the partial score vector is given by

$$\begin{aligned}U(\varvec{\gamma })= \big ( U_{\alpha _0}(\varvec{\gamma }),U_{\alpha _1}(\varvec{\gamma }), U_{\phi }(\varvec{\gamma }),U_{\alpha }(\varvec{\gamma }),U_{\varvec{\beta }}(\varvec{\gamma })^\top \, U_{\varvec{\varphi }}(\varvec{\gamma })^\top , U_{\varvec{\theta }}(\varvec{\gamma })^\top \big )^\top .\end{aligned}$$

The PMLE of \(\varvec{\gamma }\), \(\widehat{\varvec{\gamma }}\), is obtained as a solution of the non-linear system \(U(\varvec{\gamma })=\varvec{0}\), where \(\varvec{0}\) is the null vector in \(\mathbb {R}^{\kappa }\). There is no closed form solution for such a system and, hence, PMLE must be obtained numerically (Nocedal and Wright 1999). In this work, we use the so-called Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (Press et al. 1992). In practice, to calculate \(\widehat{\varvec{\gamma }}\) from a sample, we initialize \(r_{t}=0\) and \(\mu _t=0\) for \(t\le \max \{p,q\}\) and calculate \(\mu _t\) and \(r_t\) for \(t>\max \{p,q\}\) recursively from the data using (4). The BFGS algorithm also requires initialization of the parameters. The starting values of \(\alpha \), \(\varvec{\beta }\) and \(\varvec{\varphi }\) were set as the OLS estimate of

$$\begin{aligned} g(y_t) = \alpha +\varvec{x}_t^{\top } \varvec{\beta }+ \sum _{i=1}^p \varphi _i y_{t-i} + \text{ error } \text{ term }, \end{aligned}$$

restricted to the observations where \(y\in (0,1)\). The vector parameter \(\varvec{\theta }\) is initialized as a null vector, as in Bayer et al. (2017), while inflation parameters \(\alpha _0\) and \(\alpha _1\) were initialized as the sample proportion of zeroes and ones, respectively.

1.2 A.2 Cumulative partial information matrix

In this appendix we derive the cumulative partial information matrix, given by

$$\begin{aligned} K_n(\varvec{\gamma }) = -\sum ^n_{t=m+1}\mathbb {E}\left( \frac{\partial ^2 \ell _t(\mu _t,\phi )}{\partial \varvec{\gamma }\partial \varvec{\gamma }^\top } \Bigm \vert {{\mathscr {F}}}_{t-1} \right) . \end{aligned}$$

Since direct knowledge of the unconditional distribution of the proposed model is not obtainable, \(K_n\) will be the first step toward finding the asymptotic variance-covariance matrix related to the PMLE. In this case, under suitable assumptions (Fokianos and Kedem 2004), there exists a non-random information matrix, denoted by \(K(\varvec{\gamma })\), such that the weak convergence

$$\begin{aligned} \frac{K_n(\varvec{\gamma })}{n}\underset{n\rightarrow \infty }{\longrightarrow } K(\varvec{\gamma }), \end{aligned}$$

holds, where \(K(\varvec{\gamma })\) is a positive definite and invertible matrix. The matrix \(K(\varvec{\gamma })^{-1}\) is the asymptotic variance-covariance matrix related to the PMLE, presented in (6).

For \(i,j\in \{4,\dots ,\kappa \}\) (that is, \(\gamma _j\notin \{\alpha _0,\alpha _1,\phi \}\)), it can be shown that

$$\begin{aligned} \frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \gamma _i \partial \gamma _j}&= \frac{\partial }{\partial \mu _t} \left( \frac{\partial \ell _t(\varvec{\gamma })}{\partial \mu _t}\frac{\partial \mu _t}{\partial \eta _t} \frac{\partial \eta _t}{\partial \gamma _j}\right) \frac{\partial \mu _t}{\partial \eta _t} \frac{\partial \eta _t}{\partial \gamma _i} \\&= \left[ \frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \mu _t^2}\frac{\partial \mu _t}{\partial \eta _t} \frac{\partial \eta _t}{\partial \gamma _j} + \frac{\partial \ell _t(\varvec{\gamma })}{\partial \mu _t}\frac{\partial }{\partial \mu _t}\left( \frac{\partial \mu _t}{\partial \eta _t} \frac{\partial \eta _t}{\partial \gamma _j} \right) \right] \frac{\partial \mu _t}{\partial \eta _t} \frac{\partial \eta _t}{\partial \gamma _i}\,. \end{aligned}$$

Since by Lemma A.1, \(\mathbb {E}\big (\partial \ell _t(\varvec{\gamma })/\partial \mu _t \mid {{\mathscr {F}}}_{t-1}\big )=0\), we arrive at

$$\begin{aligned} \mathbb {E}\left( \frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \gamma _i \partial \gamma _j} \Bigm \vert {{\mathscr {F}}}_{t-1} \right)&= \frac{1}{g'(\mu _t)^2} \mathbb {E}\left( \left. \frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \mu _t^2} \right. \Bigm \vert {{\mathscr {F}}}_{t-1} \right) \frac{\partial \eta _t}{\partial \gamma _j} \frac{\partial \eta _t}{\partial \gamma _i}. \end{aligned}$$

The second-order derivatives of \(\ell _t(\varvec{\gamma })\) with respect to \(\mu _t\) is given by

$$\begin{aligned} \frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \mu _t^2}&=\bigg (\frac{-(\alpha _0-\alpha _1)^2}{c_t^2}+\phi (\alpha _0-1)(\alpha _1-1)\frac{\partial }{\partial \mu _t} \bigg [\frac{(y_t^*-\mu _t^*)}{c_t^2}\bigg ]\bigg )I_{(0,1)}(y_t) \\&\quad -\frac{1}{\mu _t^2}I_1(y_t)-\frac{1}{(1-\mu _t)^2}I_0(y_t). \end{aligned}$$

Observe that

$$\begin{aligned} \frac{\partial \mu _t^*}{\partial \mu _t}=\frac{\partial \mu _t^*}{\partial \nu _t}\frac{\partial \nu _t}{\partial \mu _t}=\frac{\phi (\alpha _0-1)(\alpha _1-1)}{c_t^2} \Big [\psi '(\nu _t\phi )+\psi '\big ([1-\nu _t]\phi \big )\Big ]. \end{aligned}$$

We have, for \(y_t\in (0,1)\),

$$\begin{aligned} \frac{\partial }{\partial \mu _t}\left[ \frac{y_t^*-\mu _t^*}{c_t^2}\right]&= -\frac{2(\alpha _0-\alpha _1)}{c_t^4}(y_t^*-\mu _t^*)\\&\quad -\frac{\phi (\alpha _0-1)(\alpha _1-1)}{c_t^4} \Big [ \psi '(\nu _t\phi )+\psi '\big ([1-\nu _t]\phi \big ) \Big ], \end{aligned}$$

hence

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \mu _t^2} \Bigm \vert {{\mathscr {F}}}_{t-1} \bigg )&= \frac{\alpha _0\mu _t+\alpha _1(1-\mu _t)}{\mu _t(\mu _t-1)}-\frac{(\alpha _0-\alpha _1)^2}{c_t}\\&\quad -\frac{\big [\phi (\alpha _0-1)(\alpha _1-1)\big ]^2}{c_t^3}\Big [\psi '(\nu _t\phi )+\psi '\big ([1-\nu _t]\phi \big )\Big ]. \end{aligned}$$

Second mixed derivatives related to \(\alpha _0\) and \(\alpha _1\) are obtained through direct differentiation of the log-likelihood. We have, for \(i\in \{0,1\}\) and \(j\in \{4,\dots ,\kappa \}\)

$$\begin{aligned} \frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \gamma _j\partial \alpha _i}= \bigg [\frac{\partial }{\partial \gamma _j}\bigg (\frac{1}{c_t}\left[ \frac{\partial c_t}{\partial \alpha _i}\right] \bigg )+ \frac{\partial }{\partial \gamma _j}\bigg (\phi (y_t^*-\mu _t^*) \left[ \frac{\partial \nu _t}{\partial \alpha _i}\right] \bigg )\bigg ] I_{(0,1)}(y_t), \end{aligned}$$

which, by Lemma (A.1), yields

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2 \ell _t(\varvec{\gamma })}{\partial \gamma _j\partial \alpha _i} \Bigm \vert {{\mathscr {F}}}_{t-1} \bigg )= \bigg [ \frac{\partial }{\partial \gamma _j}\bigg (\frac{1}{c_t}\left[ \frac{\partial c_t}{\partial \alpha _i}\right] \bigg ) -\phi \frac{\partial \nu _t}{\partial \alpha _i}\frac{\partial \mu _t^*}{\partial \mu _t}\frac{\partial \mu _t}{\partial \eta _t}\frac{\partial \eta _t}{\partial \gamma _j}\bigg ]c_t. \end{aligned}$$

Writing \(\ \displaystyle {\frac{\partial c_t}{\partial \gamma _j}=\frac{\partial c_t}{\partial \mu _t}\frac{\partial \mu _t}{\partial \eta _t}\frac{\partial \eta _t}{\partial \gamma _j}=\frac{\alpha _0-\alpha _1}{g'(\mu _t)}\frac{\partial \eta _t}{\partial \gamma _j}}\), we have

$$\begin{aligned} \frac{\partial }{\partial \gamma _j}\bigg (\frac{1}{c_t}\left[ \frac{\partial c_t}{\partial \alpha _i}\right] \bigg )=\frac{1}{c_tg'(\mu _t)} \bigg [ (-1)^i+\big [(\mu _t-1)I_0(i)-\mu _tI_1(i)\big ]\frac{\alpha _0-\alpha _1}{c_t} \bigg ]\frac{\partial \eta _t}{\partial \gamma _j}, \end{aligned}$$

and thus \(\displaystyle {\mathbb {E}\bigg (\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \gamma _j \partial \alpha _i} \Bigm \vert {{\mathscr {F}}}_{t-1} \bigg ) =\frac{s_t^{(i)}}{g'(\mu _t)}\frac{\partial \eta _t}{\partial \gamma _j},}\) where

$$\begin{aligned} s_t^{(i)}:&= \frac{(-1)^i\phi ^2(\alpha _0-1)^{i+1}(\alpha _1-1)^{2-i}(1-\mu _t)\mu _t}{c_t^3} \Big [\psi '(\nu _t\phi )+\psi '\big ([1-\nu _t]\phi \big )\Big ]\nonumber \\&\quad +(-1)^i+ +\big [(\mu _t-1)I_0(i)-\mu _tI_1(i)\big ]\frac{\alpha _0-\alpha _1}{c_t}. \end{aligned}$$
(A3)

For \(j\in \{4,\dots ,\kappa \}\), it is easy to show that

$$\begin{aligned} \frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \gamma _j \partial \phi }&=-\frac{\partial }{\partial \gamma _j}\Big [ \nu _t\mu _t^*+\psi \big ([1-\nu _t]\phi \big )\Big ]I_{(0,1)}(y_t)\nonumber \\&=-\bigg (\frac{(1-\alpha _0)(1-\alpha _1)}{c_t^3g'(\mu _t)}\Big [ c_t\mu _t^*+\phi (1-\alpha _1)\psi '(\nu _t\phi )-\phi \alpha _1\psi '\big ([1-\nu _t]\phi \big )\Big ]\frac{\partial \eta _t}{\partial \gamma _j}\bigg ) I_{(0,1)}(y_t). \end{aligned}$$
(A4)

Observe that, except for the indicator function, all terms in (A4) are \({{\mathscr {F}}}_{t-1}\)-measurable, so that

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \gamma _j \partial \phi }\Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )=\frac{d_t}{g'(\mu _t)}\frac{\partial \eta _t}{\partial \gamma _j}, \end{aligned}$$

where

$$\begin{aligned} d_t:=\frac{(1-\alpha _0)(1-\alpha _1)\phi }{c_t^2} \Big [ (1-\nu _t)\psi '\big ([1-\nu _t]\phi \big )-\nu _t \psi '(\nu _t\phi )\Big ]. \end{aligned}$$
(A5)

For \(i\in \{0,1\}\),

$$\begin{aligned} \frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \alpha _i \partial \phi }&=\bigg ((y_t^*-\mu _t^*)\frac{\partial \nu _t}{\partial \alpha _i} +\bigg [\phi \psi '\big ([1-\nu _t]\phi \big )-\nu _t\frac{\partial \mu _t^*}{\partial \nu _t} \bigg ]\frac{\partial \nu _t}{\partial \alpha _i}\bigg )I_{(0,1)}(y_t). \end{aligned}$$

The first term has conditional expectation 0 (Lemma A.1), so that

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \alpha _i \partial \phi } \Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )=&\frac{(-1)^i(\alpha _{1-i}-1)(\mu _t-1)\mu _t \phi }{c_t^2}\Big [ (1-\nu _t)\psi '\big ([1-\nu _t]\phi \big ) - \nu _t\psi '(\nu _t\phi ) \Big ]. \end{aligned}$$

Since \(\displaystyle {\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \phi ^2}=\Big [\psi '(\phi )-\nu _t^2\psi '(\nu _t\phi )- (1-\nu _t)^2\psi '\big ([1-\nu _t]\phi \big )\Big ]I_{(0,1)}(y_t),}\) we have

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \phi ^2} \Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )=c_t\Big [\psi '(\phi )-\nu _t^2\psi '(\nu _t\phi )-(1-\nu _t)^2\psi '\big ([1-\nu _t]\phi \big )\Big ]. \end{aligned}$$

Finally, for \(i,j\in \{0,1\}\),

$$\begin{aligned} \frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \alpha _j \partial \alpha _i}=\bigg [ \phi (y_t^*-\mu _t^*)\frac{\partial ^2\nu _t}{\partial \alpha _j \partial \alpha _i}-\phi \frac{\partial \nu _t}{\partial \alpha _i}\frac{\partial \mu _t^*}{\partial \alpha _j} -\frac{1}{c_t^2}\frac{\partial c_t}{\partial \alpha _i}&\frac{\partial c_t}{\partial \alpha _j} \bigg ]I_{(0,1)}(y_t)-\frac{1}{\alpha _i^2}I_i(j)I_i(y_t). \end{aligned}$$

Upon observing that \(P(y_t=i)=\alpha _i(1-i+(-1)^i\mu _t)\), it follows that

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial ^2\ell _t(\varvec{\gamma })}{\partial \alpha _j \partial \alpha _i}\Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )&= \frac{I_i(j)(i-1+(-1)^{i}\mu _t)}{\alpha _i}-c_t\bigg [ \phi \frac{\partial \nu _t}{\partial \alpha _i}\frac{\partial \mu _t^*}{\partial \alpha _j}+\frac{1}{c_t^2}\frac{\partial c_t}{\partial \alpha _i}\frac{\partial c_t}{\partial \alpha _j} \bigg ]\\&=\frac{I_i(j)(i-1+(-1)^{i}\mu _t)}{\alpha _i}\\&\quad -c_t\phi ^2\Big [\psi '(\nu _t\phi )+\psi '\big ([1-\nu _t]\phi \big )\Big ] \frac{\partial \nu _t}{\partial \alpha _i}\frac{\partial \nu _t}{\partial \alpha _j}-\frac{1}{c_t}\frac{\partial c_t}{\partial \alpha _i}\frac{\partial c_t}{\partial \alpha _j}. \end{aligned}$$

For \(i,j\in \{0,1\}\), let

$$\begin{aligned} A_{\{i,j\}}&:=\textrm{diag}\left\{ \mathbb {E}\bigg ( \frac{\partial \ell _{m+1} (\mu _{m+1},\varphi )}{\partial \alpha _i\partial \alpha _j} \Bigm \vert {{\mathscr {F}}}_{m}\bigg ), \dots ,\mathbb {E}\bigg ( \frac{\partial \ell _{n} (\mu _{n},\varphi )}{\partial \alpha _i\partial \alpha _j} \Bigm \vert {{\mathscr {F}}}_{n-1}\bigg ) \right\} ,\\ B_i&:=\textrm{diag}\left\{ \mathbb {E}\bigg (\frac{\partial ^2\ell _{m+1}(\varvec{\gamma })}{\partial \alpha _i \partial \phi } \Bigm \vert {{\mathscr {F}}}_{m}\bigg ),\dots , \mathbb {E}\bigg (\frac{\partial ^2\ell _{n}(\varvec{\gamma })}{\partial \alpha _i \partial \phi } \Bigm \vert {{\mathscr {F}}}_{n-1}\bigg )\right\} ,\\ C&:=\textrm{diag}\left\{ \mathbb {E}\bigg (\frac{\partial ^2\ell _{m+1}(\varvec{\gamma })}{\partial \phi ^2} \Bigm \vert {{\mathscr {F}}}_{m}\bigg ),\dots ,\mathbb {E}\bigg (\frac{\partial ^2\ell _n(\varvec{\gamma })}{\partial \phi ^2} \Bigm \vert {{\mathscr {F}}}_{n-1}\bigg )\right\} ,\\ V&:=\textrm{diag}\left\{ \mathbb {E}\bigg (\frac{\partial ^2\ell _{m+1}(\varvec{\gamma })}{\partial \mu _{m+1}^2} \Bigm \vert {{\mathscr {F}}}_{m}\bigg ),\dots ,\mathbb {E}\bigg (\frac{\partial ^2\ell _n(\varvec{\gamma })}{\partial \mu _n^2} \Bigm \vert {{\mathscr {F}}}_{n-1}\bigg )\right\} , \end{aligned}$$

\(\varvec{s}_i:=(s_{m+1}^{(i)},\dots ,s_n^{(i)})^\top \) and \(\varvec{d}:=(d_{m+1},\dots ,d_n)^\top \), where \(s_t^{(i)}\) and \(d_t\) are given in (A3) and (A5), respectively. Thus, the joint cumulative partial information matrix for \(\varvec{\gamma }\) based on a sample of size n is

$$\begin{aligned} K_n(\varvec{\gamma }) := - \left( \begin{array}{cccccccc} K_{(\alpha _0,\alpha _0)} &{}K_{(\alpha _0,\alpha _1)}&{}K_{(\alpha _0,\phi )} &{}K_{(\alpha _0,\alpha )} &{}K_{(\alpha _0,\varvec{\beta })} &{}K_{(\alpha _0,\varvec{\varphi })} &{}K_{(\alpha _0,\varvec{\theta })}\\ K_{(\alpha _1,\alpha _0)} &{}K_{(\alpha _1,\alpha _1)}&{}K_{(\alpha _1,\phi )} &{}K_{(\alpha _1,\alpha )} &{}K_{(\alpha _1,\varvec{\beta })} &{}K_{(\alpha _1,\varvec{\varphi })} &{}K_{(\alpha _1,\varvec{\theta })}\\ K_{(\phi ,\alpha _0)} &{}K_{(\phi ,\alpha _1)}&{}K_{(\phi ,\phi )} &{}K_{(\phi ,\alpha )} &{}K_{(\phi ,\varvec{\beta })} &{}K_{(\phi ,\varvec{\varphi })} &{}K_{(\phi ,\varvec{\theta })}\\ K_{(\alpha ,\alpha _0)} &{}K_{(\alpha ,\alpha _1)}&{}K_{(\alpha ,\phi )} &{}K_{(\alpha ,\alpha )} &{}K_{(\alpha ,\varvec{\beta })} &{}K_{(\alpha ,\varvec{\varphi })} &{}K_{(\alpha ,\varvec{\theta })}\\ K_{(\varvec{\beta },\alpha _0)} &{}K_{(\varvec{\beta },\alpha _1)}&{}K_{(\varvec{\beta },\phi )} &{}K_{(\varvec{\beta },\alpha )} &{}K_{(\varvec{\beta },\varvec{\beta })} &{}K_{(\varvec{\beta },\varvec{\varphi })} &{}K_{(\varvec{\beta },\varvec{\theta })}\\ K_{(\varvec{\varphi },\alpha _0)} &{}K_{(\varvec{\varphi },\alpha _1)}&{}K_{(\varvec{\varphi },\phi )} &{}K_{(\varvec{\varphi },\alpha )} &{}K_{(\varvec{\varphi },\varvec{\beta })} &{}K_{(\varvec{\varphi },\varvec{\varphi })} &{}K_{(\varvec{\varphi },\varvec{\theta })}\\ K_{(\varvec{\theta },\alpha _0)} &{}K_{(\varvec{\theta },\alpha _1)}&{}K_{(\varvec{\theta },\phi )} &{}K_{(\varvec{\theta },\alpha )} &{}K_{(\varvec{\theta },\varvec{\beta })} &{}K_{(\varvec{\theta },\varvec{\varphi })} &{}K_{(\varvec{\theta },\varvec{\theta })} \end{array} \right) , \end{aligned}$$

where, for \(i,j\in \{0,1\}\), \(K_{(\alpha _i,\alpha _j)} = \textrm{tr}(A_{\{i,j\}})\), \(K_{(\alpha _i,\phi )}=K_{(\phi ,\alpha _i)}^\top =\textrm{tr}(B_i)\), \(K_{(\alpha _i,\alpha )} =K_{(\alpha ,\alpha _i)} = \varvec{s}_i^\top T \varvec{a}\), \(K_{(\alpha _i,\varvec{\beta })} =K_{(\varvec{\beta },\alpha _j)}^\top = \varvec{s}_i^\top T R\), \(K_{(\alpha _i,\varvec{\varphi })} =K_{(\varvec{\varphi },\alpha _i)}^\top = \varvec{s}_i^\top T P\), \(K_{(\alpha _i,\varvec{\theta })} =K_{(\varvec{\theta },\alpha _i)}^\top = \varvec{s}_i^\top T Q\), \(K_{(\phi ,\phi )}=\textrm{tr}(C)\), \(K_{(\phi ,\alpha )}=K_{(\alpha ,\phi )} = \varvec{d}^\top T \varvec{a}\), \(K_{(\phi ,\varvec{\beta })} =K_{(\varvec{\beta },\phi )}^\top = \varvec{d}^\top T R\), \(K_{(\phi ,\varvec{\varphi })} =K_{(\varvec{\varphi },\phi )}^\top = \varvec{d}^\top T P\), \(K_{(\phi ,\varvec{\theta })} =K_{(\varvec{\theta },\phi )}^\top = \varvec{d}^\top T Q\), \(K_{(\alpha ,\alpha )} = \varvec{a}^\top T^2 V \varvec{a}\), \(K_{(\alpha ,\beta )} = K_{(\beta ,\alpha )}^\top = \varvec{a}^\top T^2 V R\), \(K_{(\alpha ,\varphi )} = K_{(\varphi ,\alpha )}^\top = \varvec{a}^\top T^2 V P\), \(K_{(\alpha ,\theta )} = K_{(\theta ,\alpha )}^\top = \varvec{a}^\top T^2 V Q\), \(K_{(\varvec{\beta },\varvec{\beta })} = R^\top T^2 V R\), \(K_{(\varvec{\beta },\varvec{\varphi })}=K_{(\varvec{\varphi },\varvec{\beta })}^\top = R^\top T^2 V P\), \(K_{(\varvec{\beta },\varvec{\theta })}=K_{(\varvec{\theta },\varvec{\beta })}^\top = R^\top T^2 V Q\), \(K_{(\varvec{\varphi },\varvec{\varphi })} = P^\top T^2 V P\), \(K_{(\varvec{\varphi },\varvec{\theta })}=K_{(\varvec{\theta },\varvec{\varphi })}^\top = P^\top T^2 V Q\), \(K_{(\varvec{\theta },\varvec{\theta })} = Q^\top T^2 V Q\).

Lemma A.1

With the notation in A.1,

$$\begin{aligned} \mathbb {E}\big ((y_t^*-\mu _t^*)I_{(0,1)}(y_t)\mid {{\mathscr {F}}}_{t-1}\big )=0\quad \text{ and }\quad \mathbb {E}\bigg (\frac{\partial \ell _t(\mu _t,\nu )}{\partial \mu _t} \Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )=0. \end{aligned}$$

Proof

Observe that

$$\begin{aligned}\mathbb {E}\big ((y_t^*-\mu _t^*)I_{(0,1)}(y_t)\mid {{\mathscr {F}}}_{t-1}\big )=c_t\int _0^1\left( \frac{\log (x)}{\log (1-x)}-\mu _t^*\right) \texttt{b}(x;\nu _t,\phi )dx=0,\end{aligned}$$

by standard results on the beta distribution. Hence

$$\begin{aligned} \mathbb {E}\bigg (\frac{\partial \ell _t(\mu _t,\nu )}{\partial \mu _t} \Bigm \vert {{\mathscr {F}}}_{t-1}\bigg )=&\left( \frac{1}{\mu _t}\right) P(y_t=1 \mid {{\mathscr {F}}}_{t-1})-\left( \frac{1}{1-\mu _t}\right) P(y_t=0 \mid {{\mathscr {F}}}_{t-1})\\&+\left( \frac{\alpha _0-\alpha _1}{c_t}\right) P\big (y_t\in (0,1) \mid {{\mathscr {F}}}_{t-1}\big )\\ =&\left( \frac{\alpha _0-\alpha _1}{c_t}\right) c_t-\left( \frac{1}{1-\mu _t}\right) \alpha _0(1-\mu _t)+ \left( \frac{1}{\mu _t}\right) \alpha _1\mu _t=0, \end{aligned}$$

as asserted. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, F.M., Pumi, G., Pereira, T.L. et al. Inflated beta autoregressive moving average models. Comp. Appl. Math. 42, 183 (2023). https://doi.org/10.1007/s40314-023-02322-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02322-w

Keywords

Mathematics Subject Classification

Navigation