Log in

Performance of nonconforming spectral element method for Stokes problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A nonconforming spectral element method for the Stokes problem on nonsmooth domains has been proposed in Mohapatra et al. (J Comput Appl Math 372:112696, 2020). The main focus of this article is to study the performance of this method for Stokes problems on smooth curvilinear domains and Stokes problem with mixed boundary conditions. Various test cases are considered including the generalized Stokes problem in \({\mathbb {R}}^{2}\) and \({\mathbb {R}}^{3}\) to verify the exponential accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Siraj-ul-Islam, Ullah B (2020) Local radial basis function collocation method for stokes equations with interface conditions. Eng Anal Bound Elements 119:246–256

    Article  MathSciNet  MATH  Google Scholar 

  • Agmon S, Douglis A, Nirenberg L (1964) Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun Pure Appl Math 17:35–92

    Article  MathSciNet  MATH  Google Scholar 

  • Amara A, Chacon Vera E, Trujillo D (2003) Vorticity–velocity–pressure formulation for Stokes problem. Math Comput 73(248):1673–1697

    Article  MathSciNet  MATH  Google Scholar 

  • Apel T, Kempf V, Linke A, Merden C (2020) A nonconforming pressure robust finite element method for the Stokes equations on anisotropic meshes. ar**v:2002.1217V1

  • Arnold D, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21(4):337–344

    Article  MathSciNet  MATH  Google Scholar 

  • Aziz AK, Kellog RB, Stephens AB (1985) Least squares methods for elliptic systems. Math Comput 44(169):53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

    Article  MathSciNet  MATH  Google Scholar 

  • Barrenechea G, Valentin Frederic (2002) An unusual stabilized finite element method for a generalized Stokes problem. Numer Math 92:653–677

    Article  MathSciNet  MATH  Google Scholar 

  • Belgacem FB (2000) The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis. SIAM J Numer Anal 37(4):1085–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Belgacem FB, Chilton LK, Seshaiyer P (2002) Non-conforming hp finite element methods for Stokes problems, In: Pavarino LF, Toselli A (eds) Recent developments in domain decomposition methods. Lecture notes in computational science and engineering, vol 23

  • Benes M, Kucera P (2016) Solutions to the Navier–Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math Nach 289(2–3):194–212

    Article  MathSciNet  MATH  Google Scholar 

  • Blank L (2014) On divergence-free finite element methods for the Stokes equations. Master thesis, Frie Universitat, Berlin

  • Blasco J (2007) A pressure-stabilized formulation of incompressible flow problems on anisotropic finite element meshes. Comput Math Appl 53(6):895–909

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev PB, Gunzburger MD (1995) Least-squares methods for the velocity–pressure–stress formulation of the Stokes equations. Comput Methods Appl Mech Eng 126:267–287

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev PB, Gunzburger MD (1998) Finite element methods of least-square type. SIAM Rev 40(4):789–837

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev PB, Gunzburger MD (2009) A locally conservative mimetic least-squares finite element method for the Stokes equations. In: Lirkov I, Margenov S, Wasniewski J (Eds) In proceedings LSSC 2009, Springer lecture notes in computer science, vol 5910, pp 637–644

  • Bochev PB, Lai J, Olson L (2012) A locally conservative discontinuous least-squares finite element method for the Stokes equations. Int J Numer Methods Fluids 68(6):782–804

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev PB, Lai J, Olson L (2013) A non-conforming least-squares finite element method for incompressible fluid flow problems. Int J Numer Method Fluids 72(3):375–402

    Article  MathSciNet  MATH  Google Scholar 

  • Boffi D, Brezzi F, Fortin M (2008) Finite elements for the Stokes problem. In: Boffi D, Gastaldi L (eds) Mixed finite elements, compatibility conditions, and applications. Lecture notes in mathematics, vol 1939. Springer, Berlin

    Chapter  Google Scholar 

  • Bolton P, Thatcher RW (2005) On mass conservation in least-squares methods. J Comput Phys 203(1):287–304

    Article  MathSciNet  MATH  Google Scholar 

  • Bramble JH, Pasciak JE (1996) Least-squares methods for Stokes equations based on a discrete minus one inner product. J Comput Appl Math 74:155–173

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Ser Rouge 8:129–151

    MathSciNet  MATH  Google Scholar 

  • Brezzi F, Douglas J Jr (1988) Stabilized mixed methods for Stokes problem. Numer Math 53:225–235

    Article  MathSciNet  MATH  Google Scholar 

  • Burman E, Hansbo P (2006) Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput Methods Appl Mech Eng 195:2393–2410

    Article  MathSciNet  MATH  Google Scholar 

  • Burman E, Stamn B (2010) Bubble stabilized discontinuous Galerkin method for Stokes problem. Math Model Methods Appl Sci 20(2):297–313

    Article  MathSciNet  MATH  Google Scholar 

  • Butt MM (2018) On multigrid solver for generalized Stokes equations. J Math 50(3):53–66

    MathSciNet  Google Scholar 

  • Cai Z, Manteuffel TA, McCormick SF (1995) First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity. Electron Trans Numer Anal 3:150–159

    MathSciNet  MATH  Google Scholar 

  • Calgaro C, Laminie J (2000) On the domain decomposition method for the generalized Stokes problem with continuous pressure. Numer Methods Partial Differ Equ 16(1):84–106

    Article  MathSciNet  MATH  Google Scholar 

  • Chang CL (1990) A mixed finite element method for the Stokes problem, an acceleration-pressure formulation. Appl Math Comput 36:135–146

    MathSciNet  MATH  Google Scholar 

  • Chang CL, Nelson J (1997) Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM J Numer Anal 34:480–489

    Article  MathSciNet  MATH  Google Scholar 

  • Chang CL, Yang SY (2002) Analysis of the \(L^{2}\) least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions. Appl Math Comput 130:121–144

    MathSciNet  MATH  Google Scholar 

  • Chen L (2022) Finite difference scheme for Stokes equations: MAC scheme. Technical Report, University of California

  • Chou SH (1997) Analysis and convergence of a covolume method for the generalized Stokes problem. Math Comput 66(217):85–104

    Article  MathSciNet  MATH  Google Scholar 

  • Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190:2681–2706

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Kanschat G, Schotzau D, Schwab Ch (2002) Local discontinuous Galerkin methods for the Stokes system. SIAM J Numer Anal 40(1):319–343

    Article  MathSciNet  MATH  Google Scholar 

  • Crouzeix M, Raviart P (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal Numer 7:33–76

    MathSciNet  MATH  Google Scholar 

  • Deang JM, Gunzburger MD (1998) Issues related to least-squares finite element methods for the Stokes equations. SIAM J Sci Comput 20:878–906

    Article  MathSciNet  MATH  Google Scholar 

  • Desimone H, Urquiza S, Arrieta H, Pardo E (1998) Solution of Stokes equations by moving least-squares. Commun Numer Methods Eng 14:907–920

    Article  MathSciNet  MATH  Google Scholar 

  • Douglas J Jr, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52(186):495–508

    Article  MathSciNet  MATH  Google Scholar 

  • Duan HY, Liang GP (2003) On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations. SIAM J Numer Anal 41(6):2114–2130

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois F (2002) Vorticity–velocity–pressure formulation for the Stokes problem. Math Methods Appl Sci 25(13):1091–1119

    Article  MathSciNet  MATH  Google Scholar 

  • Dutt PK, Kishore Kumar N, Upadhyay CS (2007) Non-conforming \(h-p\) spectral element methods for elliptic problems. Proc Indian Acad Sci (Math Sci) 117(1):109–145

    Article  MathSciNet  MATH  Google Scholar 

  • Eason ED (1976) A review of least-squares methods for solving partial differential equations. Int J Math 10:1021–1046

    MathSciNet  MATH  Google Scholar 

  • Gordan WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21(2):109–129

    Article  MathSciNet  MATH  Google Scholar 

  • Gunzburger MD, Bochev PB (2009) Least-squares finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  • Heinrichs W (2004) Least-squares spectral collocation for the Navier–Stokes equations. J Sci Comput 21:81–90

    Article  MathSciNet  MATH  Google Scholar 

  • Huges TJR, Franca LP (1987) A new finite element formulation for computational fluid mechanics: VII. The Stokes problem with various wellposed boundary conditions: symmetric formulation that converges for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65(1):85–96

    Article  Google Scholar 

  • Huges TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput Methods Appl Mech Eng 59:85–99

    Article  MATH  Google Scholar 

  • Ito K, Qiao J (2008) A high order compact MAC finite difference scheme for the Stokes equations: augmented variable approach. J Comput Phys 227:8177–8190

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang BN (1998) On the least-squares method. Comput Methods Appl Mech Eng 152:239–257

    Article  MATH  Google Scholar 

  • Kim SD, Shin BC (2002) \(H^{-1}\) least-squares method for the velocity-pressure-stress formulation of the Stokes problem. Appl Numer Math 40(4):451–465

    Article  MathSciNet  MATH  Google Scholar 

  • Kim SD, Lee HC, Shin BC (2003) Least-squares spectral collocation method for the Stokes equations. Numer Methods Partial Differ Equ 20(1):128–139

    Article  MathSciNet  MATH  Google Scholar 

  • Kishore Kumar N (2014) Nonconforming spectral element method for elasticity interface problems. J Appl Math Inf 32(5–6):761–781

    MathSciNet  MATH  Google Scholar 

  • Larin M, Reusken A (2007) A comparative study of efficient iterative solvers for generalized Stokes equations. Numer Linear Algorithms Appl 15(1):13–34

    Article  MathSciNet  MATH  Google Scholar 

  • Li X (2015) A meshless interpolating Galerkin boundary node method for Stokes flows. Eng Anal Bound Elements 51:112–122

    Article  MathSciNet  MATH  Google Scholar 

  • Li R, Sun Z, Yang Z (2020) A discontinuous Galerkin method for Stokes equation by divergence-free patch reconstruction. Numer Methods Partial Differ Equ 36:756–771

    Article  MathSciNet  Google Scholar 

  • Mu L, Ye X (2017) A simple finite element method for the Stokes equations. Adv Comput Math 43:1305–1324

    Article  MathSciNet  MATH  Google Scholar 

  • Mohapatra S, Ganesan S (2016) Non-conforming least squares spectral element formulation for Oseen equations with applications to Navier–Stokes equations. Numer Funct Anal Optim 37(10):1295–1311

    Article  MathSciNet  MATH  Google Scholar 

  • Mohapatra S, Dutt P, Rathish Kumar BV, Gerritsma Marc I (2020) Non-conforming least-squares spectral element method for Stokes equations on non-smooth domains. J Comput Appl Math 372:112696

    Article  MathSciNet  MATH  Google Scholar 

  • Manouzi H (1990) The Stokes problem and the mixed boundary conditions. C R Math Rep Acad Sci Canada XII(5):155–160

    MathSciNet  MATH  Google Scholar 

  • Montlaur A, Fernandez-Mendez S (2014) Analysis of the discontinuous Galerkin interior penality method with Solenoidal approximations for the Stokes equations. Int J Numer Anal Model 11(4):715–725

    MathSciNet  MATH  Google Scholar 

  • Montlaur A, Fernandez-Mendez S, Huerta A (2008) Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int J Numer Method Fluids 57(9):1071–1092

    Article  MathSciNet  MATH  Google Scholar 

  • Nafa K (2009) Improved local projection for the generalized Stokes problem. Adv Appl Math Mech 1(6):862–873

    Article  MathSciNet  MATH  Google Scholar 

  • Proot MMJ, Gerritsma MI (2002a) A least-squares spectral element formulation for the Stokes problem. J Sci Comput 17:285–296

    Article  MathSciNet  MATH  Google Scholar 

  • Proot M, Gerritsma MI (2002b) Least-squares spectral elements applied to the Stokes problem. J Comput Phys 181:454–477

    Article  MathSciNet  MATH  Google Scholar 

  • Proot MMJ, Gerritsma MI (2006) Mass and momentum conservation of the least-squares spectral element method for Stokes problem. J Sci Comput 27:389–401

    Article  MathSciNet  MATH  Google Scholar 

  • Rui H, Li X (2017) Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J Numer Anal 55(3):1135–1158

    Article  MathSciNet  MATH  Google Scholar 

  • Sarin V, Samesh A (1998) An efficient iterative method for the generalized Stokes problem. SIAM J Sci Comput 19(1):206–226

    Article  MathSciNet  MATH  Google Scholar 

  • Schumack MR, Schultz WW, Boyd JP (1991) Spectral method solution of the Stokes equations on nonstaggered grids. J Comput Phys 94(1):30–58

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab Ch (1998) \(p\) and \(h-p\) Finite element methods. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Song L, Li PW, Gu Y, Fan CM (2020) Generalized finite difference method for solving stationary 2D and 3D Stokes equations with a mixed boundary condition. Comput Math Appl 80:1726–1743

    Article  MathSciNet  MATH  Google Scholar 

  • Strikwerda JC (1984a) An iterative method for solving finite difference approximations to the Stokes equations. SIAM J Numer Anal 21(3):447–458

    Article  MathSciNet  MATH  Google Scholar 

  • Strikwerda JC (1984b) Finite difference methods for Stokes and Navier–Stokes equations. SIAM J Sci Stat Comput 5(1):56–68

    Article  MathSciNet  MATH  Google Scholar 

  • Tan F, Zhang Y, Li Y (2013) Development of a meshless hybrid boundary node method for Stokes flows. Eng Anal Bound Element 37:899–908

    Article  MathSciNet  MATH  Google Scholar 

  • Traska N, Maxeya M, Hub **aozhe, (2016) A compatible higher-order meshless method for the Stokes equations with applications to suspension flows. ar**v:1611.03911

  • Wang J, Wang Y, Ye X (2009) A robust numerical method for Stokes equations based on divergence-free \(H({\rm DIV})\) finite element methods. SIAM J Sci Comput 31:2784–2802

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kishore Kumar.

Additional information

Communicated by Cassio Oishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we state the regularity estimate for the generalized Stokes problem (1)–(3) and define the jumps in \({\mathbf {u}},p\) and \({\mathbf {u}}_{x_{k}}\) in different Sobolev norms. Finally we state the stability estimate.

1.1 A1. Regularity estimate

The following fundamental regularity estimate is based on ADN (Agmin–Douglis–Nirenberg) theory (Agmon et al. 1964).

Let \(\Omega \) be an open bounded subset of class \(C^{r},r=\text {max}(m+2,2)\). For \({\mathbf {u}}\in {\mathbf {W}}^{1,2}(\Omega )\), \(p\in L^{2}(\Omega )\) being solutions of the generalized Stokes equations (1)–(3) and for \({\mathbf {f}}\in {\mathbf {W}}^{m,2}(\Omega )\), \(h\in W^{m+1,2}(\Omega )\) and \({\mathbf {g}}\in {\mathbf {W}}^{m+\frac{3}{2},2}(\Gamma )\), then \({\mathbf {u}}\in {\mathbf {W}}^{m+2,2}(\Omega )\), \(p\in W^{m+1,2}(\Omega )\) and there exists a constant \(C_{0}(\alpha ,m,\Omega )\) such that

$$\begin{aligned} ||u||_{{\mathbf {W}}^{m+2,2}(\Omega )}+||p||_{W^{m+1,2}(\Omega )/{\mathbb {R}}}\le C_{0}\left( ||{\mathbf {f}}||_{{\mathbf {W}}^{m,2}(\Omega )}+||h||_{W^{m+1,2}(\Omega )}+||{\mathbf {g}}||_{{\mathbf {W}}^{m+\frac{3}{2},2}(\Gamma )}\right) . \end{aligned}$$
(8)

1.2 A2. Stability estimate

Since the approximation is nonconforming, to enforce the continuity along the inter element boundaries we introduce the jumps in \({\mathbf {u}},{\mathbf {u}}_{x_{1}},{\mathbf {u}}_{x_{2}}\) and p in suitable Sobolev norms. Let the edge \(\gamma _{s}\) be common to the adjacent elements \(\Omega _{l}\,\,\text {and}\,\,\Omega _{m}.\) Assume that edge \(\gamma _{s}\) is the image of \(\eta =1\) under the map \(M_{l}\) which maps S to \(\Omega _{l}\) and also the image of \(\eta =-1\) under the map \(M_{m}\) which maps S to \(\Omega _{m}\). Then the jumps along the inter-element boundaries are defined as

$$\begin{aligned}&\left\| [{\mathbf {u}}]\right\| _{0,\gamma _{s}}^{2}=\left\| \hat{{\mathbf {u}}}_{m}(\xi ,-1)-\hat{{\mathbf {u}}}_{l}(\xi ,1)\right\| _{0,I}^{2},\\&\left\| [{\mathbf {u}}_{x_{k}}]\right\| _{\frac{1}{2},\gamma _{s}}^{2}=\Vert ({\hat{{\mathbf {u}}}_{m})}_{x_{k}}(\xi ,-1)-{(\hat{{\mathbf {u}}}_{l})}_{x_{k}}(\xi ,1)\Vert _{\frac{1}{2},I}^{2},\\&\left\| [p]\right\| _{\frac{1}{2},\gamma _{s}}^{2}=\left\| {\hat{p}}_{m}(\xi ,-1)-{\hat{p}}_{l}(\xi ,1)\right\| _{\frac{1}{2},I}^{2}. \end{aligned}$$

Here, \(I=(-1,1).\) The expressions on the right hand side in the above equation are given in the transformed coordinates \(\xi \) and \(\eta .\)

Let us consider the boundary condition. Let \(\gamma _{s}\subseteq \partial \Omega \cap \Omega _{l}\) be the image of \(\xi =1\) under the map** \(M_{l}\) which maps S to \(\Omega _{l}.\) Then

$$\begin{aligned} ||{\mathbf {u}}_{l}||_{\frac{3}{2},\gamma _{s}}^{2}=||\hat{{\mathbf {u}}}_{l}(1,\eta )||_{\frac{3}{2},I}^{2}. \end{aligned}$$

Let \({\mathbf {u}},p\in \Pi ^{L,W}\). We now define the quadratic form

$$\begin{aligned} {\mathcal {V}}^{L,W}({\mathbf {u}},p)&=\sum _{l=1}^{L}||{\mathcal {L}}({\mathbf {u}}_{l},p_{l})||_{0,\Omega _{l}}^{2}+\sum _{l=1}^{L}||{\mathcal {D}}{\mathbf {u}}_{l}||_{1,\Omega _{l}}^{2}\nonumber \\&\quad +\sum _{\gamma _{s}\subseteq {\bar{\Omega }}\setminus \partial \Omega }\left( ||[{\mathbf {u}}]||_{0,\gamma _{s}}^{2}+\sum _{k=1}^{2}||[{\mathbf {u}}_{x_{k}}]||_{\frac{1}{2},\gamma _{s}}^{2}+||[p]||_{\frac{1}{2},\gamma _{s}}^{2}\right) +\sum _{\gamma _{s}\subseteq \partial \Omega \cap \Omega _{l}}||{\mathbf {u}}_{l}||_{\frac{3}{2},\gamma _{s}}^{2}. \end{aligned}$$
(9)

Then, we have the following result.

Theorem

For W large enough, there exists a constant \(C>0\) such that the estimate

$$\begin{aligned} {\mathcal {U}}^{L,W}({\mathbf {u}},p)\le C(\ln W)^{2}{\mathcal {V}}^{L,W}({\mathbf {u}},p) \end{aligned}$$
(10)

holds. Where \({\mathcal {U}}^{L,W}({\mathbf {u}},p)\) is defined in Sect. 2 (see (7)).

The proof of this one is very similar to Theorem 4.1 in (Mohapatra et al. 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N.K., Mohapatra, S. Performance of nonconforming spectral element method for Stokes problems. Comp. Appl. Math. 41, 156 (2022). https://doi.org/10.1007/s40314-022-01863-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01863-w

Keywords

Mathematics Subject Classification

Navigation