Log in

A Second-order Cone Relaxation-Based Branch-and-Bound Algorithm for Complex Quadratic Programs on Acyclic Graphs

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Complex quadratically constrained quadratic programs (QCQPs) with underlying acyclic graph structures have special interests in some important practical applications. In this paper, we propose a new second-order cone relaxation for complex QCQPs, and prove some sufficient conditions under which the proposed relaxation is tight. Then, based on the proposed second-order cone relaxation, a branch-and-bound algorithm is developed. The main feature of the proposed branch-and-bound algorithm is that some complex variables are selected with their bounds on modules or phase angles partitioned in the branching procedure. Numerical results indicate that the proposed branch-and-bound algorithm runs faster than Baron on randomly generated test instances, and is also effective in solving some publicly available test instances of optimal power flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3

Similar content being viewed by others

Notes

  1. Based on the revised definition of \(\arg (z)\in {\mathcal {A}}_{ij}\) introduced in Sect. 1, we have \(0\in {\mathcal {K}}_{{\mathcal {A}}_{ij}}\).

  2. Available at https://sites.google.com/site/burakkocuk/, generated by Kocuk et al. [23].

  3. For each optimal power flow test instances and each \((i,j)\in E\), we have checked that by minimizing \(\text {Re}(X_{ij})\) over \((X,R)\in \text {Feas}({\mathcal {B}}^0)\), we always obtain a positive optimal value.

References

  1. Low, S.H.: Convex relaxation of optimal power flow-part I: formulations and equivalence. IEEE Trans. Control Netw. 1(1), 15–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Low, S.H.: Convex relaxation of optimal power flow-part II: exactness. IEEE Trans. Control Netw. 1(2), 177–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  4. Gershman, A.B., Sidiropoulos, N.D., Shahbazpanahi, S., Bengtsson, M., Ottersten, B.: Convex optimization-based beamforming: from receive to transmit and network designs. IEEE Signal Process. Mag. 27(3), 62–75 (2010)

    Article  Google Scholar 

  5. Luo, Z.-Q., Ma, W.-K., So, A.M.-C., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  6. Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16(3), 871–890 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bose, S., Gayme, D.F., Chandy, K.M., Low, S.H.: Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Trans. Control Netw. 2(3), 278–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lavaei, J., Tse, D., Zhang, B.: Geometry of power flows and optimization in distribution networks. IEEE Trans. Netw. Syst. 29(2), 572–583 (2014)

    Google Scholar 

  9. Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is NP-Hard. IEEE Trans. Power Syst. 31(1), 798–801 (2016)

    Article  Google Scholar 

  10. Sojoudi, S., Lavaei, J.: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim. 24(4), 1746–1778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Azuma, G., Fukuda, M., Kim, S., Yamashita, M.: Exact SDP relaxations of quadratically constrained quadratic programs with forest structures. J. Global Optim. 82, 243–262 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. **, Q., Tian, Y., Deng, Z., Fang, S.-C.: Exact computable representation of some second-order cone constrained quadratic programming problems. J. Oper. Res. Soc. China 1, 107–134 (2013)

    Article  MATH  Google Scholar 

  13. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, C., Deng, Z., Zhang, W.-Q., Fang, S.-C.: Argument division based branch-and-bound algorithm for unit-modulus constrained complex quadratic programming. J. Global Optim. 70, 171–187 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, C., Liu, Y.-F., Zhou, J.: An enhanced SDR based global algorithm for nonconvex complex quadratic programs with signal processing applications. IEEE Open J. Signal Process. 1, 120–134 (2020)

    Article  Google Scholar 

  19. Chen, C., Atamtürk, A., Oren, S.S.: A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables. Math. Program. 165(2), 549–577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mosek ApS 2022. http://www.mosek.com.

  21. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Method Softw. 24(4–5), 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kocuk, B., Dey, S.S., Sun, X.A.: Inexactness of SDP relaxation and valid inequalities for optimal power flow. IEEE Trans. Power Syst. 31(1), 642–651 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. Lu proposed the main ideas of the enhanced second-order cone relaxation, and designed the main framework of the proposed branch-and-bound algorithm. Z.-B. Deng analyzed the tightness of the enhanced second-order cone relaxation. Y.-H. Liu and Y.-Z. Xu realized all the algorithms proposed in this paper, and carried out the numerical experiments. All authors have checked the correctness of the paper.

Corresponding author

Correspondence to Cheng Lu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Cheng Lu’s research was supported by the National Natural Science Foundation of China (No. 12171151). Zhi-Bin Deng’s research was supported by the National Natural Science Foundation of China (No. T2293774), Fundamental Research Funds for the Central University (No.E2ET0808X2), and a grant from MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation at UCAS.

Appendix A: The convex hull of \({\mathcal {F}}_{ij}\)

Appendix A: The convex hull of \({\mathcal {F}}_{ij}\)

In this appendix, we prove the following result: If both \((R_{ij},X_{ij})\in {\mathcal {X}}_{ij}\) and \((X_{ii},X_{jj},R_{ij})\in {\mathcal {B}}_{ij}\) hold, then we have \((X_{ii},X_{jj},R_{ij},X_{ij}) \in \text {Conv}{\mathcal {F}}_{ij}\) and \((X_{ii},X_{jj},X_{ij}) \in \text {Conv}{\mathcal {J}}_{ij}\). This result is an extension of some previous results in [17,18,19]. We provide a proof here for the completeness of the paper.

Based on Corollary 5 in [19], we have \({\mathcal {B}}_{ij}=\text {Conv} {\mathcal {T}}_{ij}\). Besides, for a fixed \(R_{ij}\geqslant 0\), the constraint \((R_{ij},X_{ij})\in {\mathcal {X}}_{ij}\) implies that \(X_{ij}\in \text {Conv}{\mathcal {Z}}_{ij}(R_{ij})\). Hence, for any \((i,j)\in E\), the two constraints \((X_{ii},X_{jj},R_{ij})\in {\mathcal {B}}_{ij}\) and \((R_{ij},X_{ij})\in {\mathcal {X}}_{ij}\) imply the following decompositions:

$$\begin{aligned} \begin{aligned} (X_{ii},X_{jj},R_{ij})=\sum _{t=1}^r \lambda _t (X^t_{ii},X^t_{jj},R^t_{ij}),~X_{ij}=\sum _{s=1}^k \alpha _s X^s_{ij}, \end{aligned} \end{aligned}$$
(33)

where \((X^t_{ii},X^t_{jj},R^t_{ij})\in {\mathcal {T}}_{ij}\) for \(t=1,\cdots ,r\), \(X^s_{ij}\in {\mathcal {Z}}_{ij}(R_{ij})\) for \(s=1,\cdots ,k\), \(\sum _{i=1}^r \lambda _t=1\), \(\sum _{s=1}^k \alpha _s=1\), and \(\lambda _1,\cdots ,\lambda _r,\alpha _1,\cdots ,\alpha _k\geqslant 0\). Let \( \theta ^s_{ij}=\arg (X^s_{ij})\) and denote \(X^s_{ij}=R_{ij}\textrm{e}^{ \texttt {i} \theta ^s_{ij}}\) for each \(s\in \{1,\cdots ,k\}\). Following (33), together with \(\sum _{i=1}^r \lambda _t=1\) and \(\sum _{s=1}^k \alpha _s=1\), we have the following results:

$$\begin{aligned} \begin{aligned}&(X_{ii},X_{jj},R_{ij},X_{ij})= \sum _{s=1}^k \sum _{t=1}^r \lambda _t \alpha _s (X^t_{ii},X^t_{jj},R^t_{ij},R^t_{ij} \textrm{e}^{ \texttt {i} \theta ^s_{ij}}),\\&\sum _{s=1}^k \sum _{t=1}^r \lambda _t \alpha _s =\sum _{s=1}^k \left( \sum _{t=1}^r \lambda _t\right) \alpha _s =\sum _{s=1}^k \alpha _s=1. \end{aligned} \end{aligned}$$
(34)

Moreover, since

$$\begin{aligned} (X^t_{ii},X^t_{jj},R^t_{ij},R^t_{ij} \textrm{e}^{ \texttt {i} \theta ^s_{ij}})\in {\mathcal {F}}_{ij},~s=1,\cdots ,k,~t=1,\cdots ,r, \end{aligned}$$
(35)

we have \((X_{ii},X_{jj},R_{ij},X_{ij}) \in \text {Conv}{\mathcal {F}}_{ij}\).

Next, we show that \((X_{ii},X_{jj},X_{ij}) \in \text {Conv}{\mathcal {J}}_{ij}\). Following (34), we have

$$\begin{aligned} \begin{aligned}&(X_{ii},X_{jj},X_{ij})= \sum _{s=1}^k \sum _{t=1}^r \lambda _t \alpha _s (X^t_{ii},X^t_{jj},R^t_{ij} \textrm{e}^{ \texttt {i} \theta ^s_{ij}}),\\&\sum _{s=1}^k \sum _{t=1}^r \lambda _t \alpha _s =1. \end{aligned} \end{aligned}$$
(36)

Note that since \((X^t_{ii},X^t_{jj},R^t_{ij})\in {\mathcal {T}}_{ij}\) implies that \(R^t_{ij}=(X^t_{ii}X^t_{jj})^{1/2}\), and \(X^s_{ij}\in {\mathcal {Z}}_{ij}(R_{ij})\) implies that \(\theta ^s_{ij}=\arg (X^s_{ij})\in {\mathcal {A}}_{ij}\), we have

$$\begin{aligned} (X^t_{ii},X^t_{jj},R^t_{ij} \textrm{e}^{ \texttt {i} \theta ^s_{ij}})\in {\mathcal {J}}_{ij},~s=1,\cdots ,k,~t=1,\cdots ,r. \end{aligned}$$
(37)

Thus, \((X_{ii},X_{jj},X_{ij})\) is in the convex hull of \({\mathcal {J}}_{ij}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Xu, YZ., Lu, C. et al. A Second-order Cone Relaxation-Based Branch-and-Bound Algorithm for Complex Quadratic Programs on Acyclic Graphs. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00506-z

Keywords

Mathematics Subject Classification

Navigation