Log in

Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review

  • Systematic Review
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Purpose

Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exists for antimicrobial dosing adjustments in patients requiring extracorporporeal membrane oxygenation (ECMO) therapy. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill adult patients requiring ECMO.

Methods

Medline, EMBASE, Global Health, and All EBM Reviews databases were searched. Grey literature was examined. All studies reporting PK/PD parameters of antimicrobials in critically ill adults treated with ECMO were included, except for case reports and congress abstracts. Ex vivo studies were included. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently abstract data and evaluate methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK guidelines. Patients’ and studies’ characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Dosing recommendations were formulated based on data from controlled studies.

Results

Thirty-two clinical studies were included; most were observational and uncontrolled. Fourteen ex vivo studies were analysed. Information on patient characteristics and co-treatments was often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the studied drugs. Few dosing recommendations could be formulated given the lack of good quality data.

Conclusion

Limited data exist on the PK/PD of antimicrobials during ECMO therapy. Rigorously designed and well powered populational PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring ECMO support.

PROSPERO Registration Number

CRD42018099992 (Registered: July 24th 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Udy AA, Roberts JA, Lipman J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 2013;39:2070–82. https://doi.org/10.1007/s00134-013-3088-4.

    Article  CAS  PubMed  Google Scholar 

  2. Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;77:3–11. https://doi.org/10.1016/j.addr.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  3. Shekar K, Roberts JA, McDonald CI, Ghassabian S, Anstey C, Wallis SC, Mullany DV, Fung YL, Fraser JF. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care. 2015;19:164. https://doi.org/10.1186/s13054-015-0891-z.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wildschut ED, Ahsman MJ, Allegaert K, Mathot RA, Tibboel D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16. https://doi.org/10.1007/s00134-010-2041-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bizzarro MJ, Conrad SA, Kaufman DA, Rycus P, Extracorporeal Life Support Organization Task Force on Infections EMO. Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr Crit Care Med. 2011;12:277–81. https://doi.org/10.1097/PCC.0b013e3181e28894.

    Article  PubMed  Google Scholar 

  6. Schmidt M, Brechot N, Hariri S, Guiguet M, Luyt CE, Makri R, Leprince P, Trouillet JL, Pavie A, Chastre J, Combes A. Nosocomial infections in adult cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation. Clin Infect Dis. 2012;55:1633–41. https://doi.org/10.1093/cid/cis783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aubron C, Cheng AC, Pilcher D, Leong T, Magrin G, Cooper DJ, Scheinkestel C, Pellegrino V. Infections acquired by adults who receive extracorporeal membrane oxygenation: risk factors and outcome. Infect Control Hosp Epidemiol. 2013;34:24–30. https://doi.org/10.1086/668439.

    Article  PubMed  Google Scholar 

  8. Abrams D, Grasselli G, Schmidt M, Mueller T, Brodie D. ECLS-associated infections in adults: what we know and what we don’t yet know. Intensive Care Med. 2020;46:182–91. https://doi.org/10.1007/s00134-019-05847-z.

    Article  PubMed  Google Scholar 

  9. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9.

    Article  PubMed  Google Scholar 

  10. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. https://doi.org/10.1186/2046-4053-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928. https://doi.org/10.1136/bmj.d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan A-W, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355: i4919. https://doi.org/10.1136/bmj.i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2020. https://doi.org/10.1002/jrsm.1411.

    Article  PubMed  Google Scholar 

  14. Kanji S, Hayes M, Ling A, Shamseer L, Chant C, Edwards DJ, Edwards S, Ensom MHH, Foster DR, Hardy B, Kiser TH, la Porte C, Roberts JA, Shulman R, Walker S, Zelenitsky S, Moher D. Reporting guidelines for clinical pharmacokinetic studies: the ClinPK statement. Clin Pharmacokinet. 2015;54:783–95. https://doi.org/10.1007/s40262-015-0236-8.

    Article  PubMed  Google Scholar 

  15. Jaruratanasirikul S, Vattanavanit V, Samaeng M, Nawakitrangsan M, Sriwiriyajan S. Pharmacokinetics of imipenem in critically ill patients with life-threatening severe infections during support with extracorporeal membrane oxygenation. Clin Drug Invest. 2019;39:787–98. https://doi.org/10.1007/s40261-019-00796-3.

    Article  CAS  Google Scholar 

  16. Jaruratanasirikul S, Vattanavanit V, Wongpoowarak W, Nawakitrangsan M, Samaeng M. Pharmacokinetics and Monte Carlo dosing simulations of imipenem in critically ill patients with life-threatening severe infections during support with extracorporeal membrane oxygenation. Eur J Drug Metab Pharmacokinet. 2020;45:735–47. https://doi.org/10.1007/s13318-020-00643-3.

    Article  CAS  PubMed  Google Scholar 

  17. Bouglé A, Dujardin O, Lepere V, Ait Hamou N, Vidal C, Lebreton G, Salem JE, El-Helali N, Petijean G, Amour J. PHARMECMO: therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on extracorporeal life support. Anaesth Crit Care Pain Med. 2019;38:493–7. https://doi.org/10.1016/j.accpm.2019.02.015.

    Article  PubMed  Google Scholar 

  18. Chen GJ, Lin SW, Tsai IL, Kuo CH, Wang JT, Hsieh SM. Therapeutic drug monitoring of the teicoplanin trough level after the loading doses in patients receiving venoarterial extracorporeal membrane oxygenation. J Formos Med Assoc. 2020;119:1086–92. https://doi.org/10.1016/j.jfma.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  19. Eyler RF, Heung M, Pleva M, Sowinski KM, Park PK, Napolitano LM, Mueller BA. Pharmacokinetics of oseltamivir and oseltamivir carboxylate in critically ill patients receiving continuous venovenous hemodialysis and/or extracorporeal membrane oxygenation. Pharmacotherapy. 2012;32:1061–9. https://doi.org/10.1002/phar.1151.

    Article  CAS  PubMed  Google Scholar 

  20. Gélisse E, Neuville M, de Montmollin E, Bouadma L, Mourvillier B, Timsit JF, Sonneville R. Extracorporeal membrane oxygenation (ECMO) does not impact on amikacin pharmacokinetics: a case-control study. Intensive Care Med. 2016;42:946–8. https://doi.org/10.1007/s00134-016-4267-x.

    Article  PubMed  Google Scholar 

  21. Hanberg P, Obrink-Hansen K, Thorsted A, Bue M, Tottrup M, Friberg LE, Hardlei TF, Soballe K, Gjedsted J. Population pharmacokinetics of meropenem in plasma and subcutis from patients on extracorporeal membrane oxygenation treatment. Antimicrob Agents Chemother. 2018;62:05. https://doi.org/10.1128/AAC.02390-17.

    Article  Google Scholar 

  22. Jung Y, Lee DH, Kim HS. Population pharmacokinetics and pharmacodynamic target attainment of vancomycin in adults on extracorporeal membrane oxygenation: a prospective cohort study. Antimicrob Agents Chemother. 2020;30:30. https://doi.org/10.1128/AAC.02408-20.

    Article  Google Scholar 

  23. Kang S, Jang JY, Hahn J, Kim D, Lee JY, Min KL, Yang S, Wi J, Chang MJ. Dose optimization of cefpirome based on population pharmacokinetics and target attainment during extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2020;64:21. https://doi.org/10.1128/AAC.00249-20.

    Article  Google Scholar 

  24. Kuhn D, Metz C, Seiler F, Wehrfritz H, Roth S, Alqudrah M, Becker A, Bracht H, Wagenpfeil S, Hoffmann M, Bals R, Hubner U, Geisel J, Lepper PM, Becker SL. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study. Crit Care. 2020;24:664. https://doi.org/10.1186/s13054-020-03397-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu D, Chen W, Wang Q, Li M, Zhang Z, Cui G, Li P, Zhang X, Ma Y, Zhan Q, Wang C. Influence of venovenous extracorporeal membrane oxygenation on pharmacokinetics of vancomycin in lung transplant recipients. J Clin Pharm. 2020;45:1066–75. https://doi.org/10.1111/jcpt.13163.

    Article  CAS  Google Scholar 

  26. Lopez-Sanchez M, Moreno-Puigdollers I, Rubio-Lopez MI, Zarragoikoetxea-Jauregui I, Vicente-Guillen R, Argente-Navarro MP. Pharmacokinetics of micafungin in patients treated with extracorporeal membrane oxygenation: an observational prospective study (Farmacocinetica da micafungina em pacientes tratados com oxigenacao por membrana extracorporea: um estudo observacional prospectivo.). Rev Bras Ter Intensiva. 2020;32:277–83. https://doi.org/10.5935/0103-507x.20200044.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahmoud AA, Avedissian SN, Al-Qamari A, Bohling T, Pham M, Scheetz MH. Pharmacokinetic assessment of pre- and post-oxygenator vancomycin concentrations in extracorporeal membrane oxygenation: a prospective observational study. Clin Pharmacokinet. 2020;59:1575–87. https://doi.org/10.1007/s40262-020-00902-1.

    Article  CAS  PubMed  Google Scholar 

  28. Moore JN, Healy JR, Thoma BN, Peahota MM, Ahamadi M, Schmidt L, Cavarocchi NC, Kraft WK. A population pharmacokinetic model for vancomycin in adult patients receiving extracorporeal membrane oxygenation therapy. CPT Pharmacometrics Syst Pharmacol. 2016;5:495–502. https://doi.org/10.1002/psp4.12112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mulla H, Peek GJ, Harvey C, Westrope C, Kidy Z, Ramaiah R. Oseltamivir pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation support. Anaesth Intensive Care. 2013;41:66–73. https://doi.org/10.1177/0310057x1304100112.

    Article  CAS  PubMed  Google Scholar 

  30. Ruiz-Ramos J, Gimeno R, Perez F, Ramirez P, Villarreal E, Gordon M, Vicent C, Remedios Marques M, Castellanos-Ortega A. Pharmacokinetics of amikacin in critical care patients on extracorporeal device. ASAIO J. 2018;64:686–8. https://doi.org/10.1097/mat.0000000000000689.

    Article  CAS  PubMed  Google Scholar 

  31. Shekar K, Fraser JF, Taccone FS, Welch S, Wallis SC, Mullany DV, Lipman J, Roberts JA. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: a matched cohort study. Crit Care. 2014;18:565. https://doi.org/10.1186/s13054-014-0565-2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Touchard C, Aubry A, Eloy P, Brechot N, Lebreton G, Franchineau G, Besset S, Hekimian G, Nieszkowska A, Leprince P, Luyt CE, Combes A, Schmidt M. Predictors of insufficient peak amikacin concentration in critically ill patients on extracorporeal membrane oxygenation. Crit Care. 2018;22:199. https://doi.org/10.1186/s13054-018-2122-x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Q, Zhang Z, Liu D, Chen W, Cui G, Li P, Zhang X, Li M, Zhan Q, Wang C. Population pharmacokinetics of caspofungin among extracorporeal membrane oxygenation patients during the postoperative period of lung transplantation. Antimicrob Agents Chemother. 2020;64:e00687-e720. https://doi.org/10.1128/AAC.00687-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wi J, Noh H, Min KL, Yang S, ** BH, Hahn J, Bae SK, Kim J, Park MS, Choi D, Chang MJ. Population pharmacokinetics and dose optimization of teicoplanin during venoarterial extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2017;61:e01015-e1017. https://doi.org/10.1128/aac.01015-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu CC, Shen LJ, Hsu LF, Ko WJ, Wu FL. Pharmacokinetics of vancomycin in adults receiving extracorporeal membrane oxygenation. J Formos Med Assoc. 2016;115:560–70. https://doi.org/10.1016/j.jfma.2015.05.017.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Zhang D, Lian W, Wang X, Du W, Zhang Z, Guo D, Zhang X, Zhan Q, Li P. Imipenem population pharmacokinetics: therapeutic drug monitoring data collected in critically ill patients with or without extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2020;64:e00385-e420. https://doi.org/10.1128/AAC.00385-20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kroh UF, Holl T, Feussner KD. Pharmacokinetics and dosage adjustment of antibiotics during continuous extracorporeal lung assistance and hemofiltration. Artif Organs. 1992;16:457–60. https://doi.org/10.1111/j.1525-1594.1992.tb00323.x.

    Article  CAS  PubMed  Google Scholar 

  38. Donadello K, Roberts JA, Cristallini S, Beumier M, Shekar K, Jacobs F, Belhaj A, Vincent JL, de Backer D, Taccone FS. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Crit Care. 2014;18:632. https://doi.org/10.1186/s13054-014-0632-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Donadello K, Antonucci E, Cristallini S, Roberts JA, Beumier M, Scolletta S, Jacobs F, Rondelet B, de Backer D, Vincent JL, Taccone FS. Beta-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents. 2015;45:278–82. https://doi.org/10.1016/j.ijantimicag.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  40. Park SJ, Yang JH, Park HJ, In YW, Lee YM, Cho YH, Chung CR, Park CM, Jeon K, Suh GY. Trough concentrations of vancomycin in patients undergoing extracorporeal membrane oxygenation. PLoS ONE. 2015;10: e0141016. https://doi.org/10.1371/journal.pone.0141016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang CJ, Wu CW, Wu CC. Effect of extracorporeal membrane oxygenation on the new vancomycin dosing regimen in critically ill patients receiving continuous venovenous hemofiltration. Ther Drug Monit. 2018;4:310–4. https://doi.org/10.1097/ftd.0000000000000495.

    Article  Google Scholar 

  42. De Rosa FG, Corcione S, Baietto L, Ariaudo A, Di Perri G, Ranieri VM, D’Avolio A. Pharmacokinetics of linezolid during extracorporeal membrane oxygenation. Int J Antimicrob Agents. 2013;41:590–1. https://doi.org/10.1016/j.ijantimicag.2013.01.016.

    Article  CAS  PubMed  Google Scholar 

  43. Lemaitre F, Luyt CE, Roullet-Renoleau F, Nieszkowska A, Zahr N, Corvol E, Fernandez C, Antignac M, Farinotti R, Combes A. Impact of extracorporeal membrane oxygenation and continuous venovenous hemodiafiltration on the pharmacokinetics of oseltamivir carboxylate in critically ill patients with pandemic (H1N1) influenza. Ther Drug Monit. 2012;34:171–5. https://doi.org/10.1097/FTD.0b013e318248672c.

    Article  CAS  PubMed  Google Scholar 

  44. Turner RB, Rouse S, Elbarbry F, Wanek S, Grover V, Chang E. Azithromycin pharmacokinetics in adults with acute respiratory distress syndrome undergoing treatment with extracorporeal membrane oxygenation. Ann Pharmacother. 2016;50:72–3. https://doi.org/10.1177/1060028015612105.

    Article  CAS  PubMed  Google Scholar 

  45. Welsch C, Augustin P, Allyn J, Massias L, Montravers P, Allou N. Alveolar and serum concentrations of imipenem in two lung transplant recipients supported with extracorporeal membrane oxygenation. Transpl Infect Dis. 2015;17:103–5. https://doi.org/10.1111/tid.12327.

    Article  CAS  PubMed  Google Scholar 

  46. Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60:265–75. https://doi.org/10.1111/j.1365-2125.2005.02432.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cies JJ, Moore WS, Giliam N, Low T, Enache A, Chopra A. Impact of ex-vivo extracorporeal membrane oxygenation circuitry on daptomycin. Perfusion. 2018;33:624–9. https://doi.org/10.1177/0267659118781761.

    Article  PubMed  Google Scholar 

  48. Cies JJ, Moore WS, Giliam N, Low T, Enache A, Chopra A. Oxygenator impact on ceftaroline in extracorporeal membrane oxygenation circuits. Pediatr Crit Care Med. 2018;19:1077–82. https://doi.org/10.1097/PCC.0000000000001693.

    Article  PubMed  Google Scholar 

  49. Cies JJ, Moore WS, Giliam N, Low T, Enache A, Chopra A. Oxygenator impact on ceftolozane and tazobactam in extracorporeal membrane oxygenation circuits. Pediatr Crit Care Med. 2020;21:276–82. https://doi.org/10.1097/PCC.0000000000002174.

    Article  PubMed  Google Scholar 

  50. Cies JJ, Moore WS, Giliam N, Low T, Marino D, Deacon J, Enache A, Chopra A. Oxygenator impact on voriconazole in extracorporeal membrane oxygenation circuits. Perfusion. 2020;35:529–33. https://doi.org/10.1177/0267659120937906.

    Article  PubMed  Google Scholar 

  51. Lemaitre F, Hasni N, Leprince P, Corvol E, Belhabib G, Fillatre P, Luyt CE, Leven C, Farinotti R, Fernandez C, Combes A. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care. 2015;19:40. https://doi.org/10.1186/s13054-015-0772-5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Leven C, Fillatre P, Petitcollin A, Verdier MC, Laurent J, Nesseler N, Launey Y, Tattevin P, Bellissant E, Flecher E, Lemaitre F. Ex vivo model to decipher the impact of extracorporeal membrane oxygenation on beta-lactam degradation kinetics. Ther Drug Monit. 2017;39:180–4. https://doi.org/10.1097/ftd.0000000000000369.

    Article  CAS  PubMed  Google Scholar 

  53. Mehta NM, Halwick DR, Dodson BL, Thompson JE, Arnold JH. Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med. 2007;33:1018–24. https://doi.org/10.1007/s00134-007-0606-2.

    Article  CAS  PubMed  Google Scholar 

  54. Park J, Shin DA, Lee S, Cho YJ, Jheon S, Lee JC, Kim HC. Investigation of key circuit constituents affecting drug sequestration during extracorporeal membrane oxygenation treatment. ASAIO J. 2017;63:293–8. https://doi.org/10.1097/mat.0000000000000489.

    Article  PubMed  Google Scholar 

  55. Raffaeli G, Cavallaro G, Allegaert K, Koch BCP, Mosca F, Tibboel D, Wildschut ED. Sequestration of voriconazole and vancomycin into contemporary extracorporeal membrane oxygenation circuits: An in vitro study. Front Pediatr. 2020;8:468. https://doi.org/10.3389/fped.2020.00468.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shekar K, Roberts JA, McDonald CI, Fisquet S, Barnett AG, Mullany DV, Ghassabian S, Wallis SC, Fung YL, Smith MT, Fraser JF. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care. 2012;16:R194. https://doi.org/10.1186/cc11679.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tron CL, Filliâtre P, Maillard N, Nesseler N, Tattevin P, Flécher E, Bellissant E, Verdier MC, Lemaitre F. Should we fear tubing adsorption of antibacterial drugs in extracorporeal membrane oxygenation? An answer for cephalosporins and carbapenems. Clin Exp Pharmacol Physiol. 2016;43:281–3. https://doi.org/10.1111/1440-1681.12527.

    Article  CAS  PubMed  Google Scholar 

  58. Watt KM, Cohen-Wolkowiez M, Williams DC, Bonadonna DK, Cheifetz IM, Thakker D, Benjamin DK Jr, Brouwer KLR. Antifungal extraction by the extracorporeal membrane oxygenation circuit. J Extra Corpor Technol. 2017;49:150–9.

    PubMed  PubMed Central  Google Scholar 

  59. Erstad BL, Barletta JF. Drug dosing in the critically ill obese patient—a focus on sedation, analgesia, and delirium. Crit Care. 2020;24:315. https://doi.org/10.1186/s13054-020-03040-z.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zheng WY, Richardson LC, Li L, Day RO, Westbrook JI, Baysari MT. Drug-drug interactions and their harmful effects in hospitalised patients: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2018;74:15–27. https://doi.org/10.1007/s00228-017-2357-5.

    Article  CAS  PubMed  Google Scholar 

  61. Di Nardo M, Cairoli S, Goffredo BM, Stoppa F, D’Argenio P, Corsetti T, Ranieri VM. Therapeutic drug monitoring for meropenem after the extracorporeal membrane oxygenation circuit change in children: is it necessary? Minerva Anestesiol. 2016;82:1018–9.

    PubMed  Google Scholar 

  62. Shekar K, Roberts JA, Welch S, Buscher H, Rudham S, Burrows F, Ghassabian S, Wallis SC, Levkovich B, Pellegrino V, McGuinness S, Parke R, Gilder E, Barnett AG, Walsham J, Mullany DV, Fung YL, Smith MT, Fraser JF. ASAP ECMO: Antibiotic, sedative and analgesic pharmacokinetics during extracorporeal membrane oxygenation: a multi-centre study to optimise drug therapy during ECMO. BMC Anesthesiol. 2012;12:29. https://doi.org/10.1186/1471-2253-12-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shekar K, Roberts JA, Smith MT, Fung YL, Fraser JF. The ECMO PK Project: an incremental research approach to advance understanding of the pharmacokinetic alterations and improve patient outcomes during extracorporeal membrane oxygenation. BMC Anesthesiol. 2013;13:7. https://doi.org/10.1186/1471-2253-13-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Alexandre Duceppe.

Ethics declarations

Funding

None.

Conflicts of interests/Competing interests

All authors declare that they have no conflicts of interest.

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Code availability

Not applicable.

Authors’ contributions

Marc-Alexandre Duceppe (ORCID: 0000-0001-5211-2600): This author had the idea for the article, helped in the research design, created and performed the search strategy, screened for citations, prepiloted the case report forms, evaluated selected citations, and participated in the writing and revision of the manuscript. Salmaan Kanji (ORCID: 0000-0003-0594-0360): This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Anh Thu Do: This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Ni Ruo: This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Yiorgos Alexandros Cavayas (ORCID: 0000-0001-7664-2104): This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Martin Albert (ORCID: 0000-0001-8364-4335): This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Maxime Robert-Halabi (ORCID: 0000-0002-3813-0965): This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Samara Zavalkoff (ORCID: 0000-0002-4447-1977): This author helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. Patrice Dupont (ORCID: 0000-0003-3634-6858): This author helped in the research design, assisted with the creation and launch of the search strategy, and participated in the writing and revision of the manuscript. Gordan Samoukovic (ORCID: 0000-0002-9169-2158): This author had the idea for the article, helped in the research design, evaluated selected citations, and participated in the writing and revision of the manuscript. David Williamson (ORCID: 0000-0003-3360-4831): This author helped in the research design, screened for citations, prepiloted the case report forms, evaluated selected citations, and participated in the writing and revision of the manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duceppe, MA., Kanji, S., Do, A.T. et al. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 81, 1307–1329 (2021). https://doi.org/10.1007/s40265-021-01557-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01557-3

Navigation