Log in

Bioassay of Carcinoembryonic Antigens by Organic Field-effect Transistors Based on D-A Type Conjugated Polymer

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Biosensors based on organic field-effect transistors(OFETs) are one of the most promising electronic devices for emerging bioanalytical applications. The selection of organic semiconductors(OSCs) is essential to improve the sensitivity and reliability of this kind of biosensors. Given the good field effect performance and tunable structures of D-A type conjugated polymers, here, we design two D-A type copolymers[P(BDT-co-DPP2T-ThC2) and P(BDT-co-DPP2T-Th)], which are applied as the OSC layers. With carcinoembryonic antigen antibody(anti-CEA) adsorbed onto the OSC layers as the recognition sites, OFETs based biosensors for CEA detection are developed. The experimental findings support that the attachment of ester side groups onto the polymer backbone[as for P(BDT-co-DPP2T-ThC2)] is favorable for improved solubility and filming properties of the polymer. The introduction of ester side groups affects molecular stacking and enhances intermolecular forces. The resultant devices show high charge mobility and antibody adsorption ability, both of which are critical for sensitive and facile detection of CEA biomarkers. The reliable determination of CEA down to the picomolar level is determined. It is expected that this kind of biosensors fabricated by D-A type conducting polymers will open new avenues toward the early diagnosis, real-time monitoring and treatment of future cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook P. D., Rousseau R. J., Mohsin Mian A., Meyer Jr. R. B., Dea P., Ivanovics G., Streeter D. G., Witkowski J. T., Stout M. G., J. Am. Chem. Soc., 1975, 97, 2916

    Article  CAS  PubMed  Google Scholar 

  2. Janata J., Anal. Chem., 1987, 59, 1351

    Article  CAS  Google Scholar 

  3. Hal R., Eijkel J. C. T., Bergveld P., Adv. Colloid Interface Sci., 1996, 68, 31

    Article  Google Scholar 

  4. Berto M., Casalini S., Di Lauro M., Marasso S. L., Cocuzza M., Perrone D., Pinti M., Cossarizza A., Pirri C. F., Simon D. T., Berggren M., Zerbetto F., Bortolotti C. A., Biscarini F., Anal. Chem., 2016, 88, 12330

    Article  CAS  PubMed  Google Scholar 

  5. Shen H., Zou Y., Zang Y., Huang D., ** W., Di C., Zhu D., Mater. Horiz., 2018, 5, 240

    Article  CAS  Google Scholar 

  6. Wu Z., Liang Z., He Z., Wang T., **ao R., Han F., Zhao Z., Han D., Han D., Niu L., Chem. Res. Chinese Universities, 2022, 38(6), 1387

    Article  CAS  Google Scholar 

  7. **e C., Chen N., Yang Y. B., Yuan Q., Chem. J. Chinese Universities, 2021, 42(11), 3406

    CAS  Google Scholar 

  8. Chao L. M., Liang Y., Hu X., Shi H. H., **a T., Zhang H., **a H. L., J. Phys. D: Appl. Phys., 2022, 55, 153001

    Article  Google Scholar 

  9. Lin Y.-H., Han Y., Sharma A., AlGhamdi W. S., Liu C.-H., Chang T.-H., **ao X.-W., Lin W.-Z., Lu P.-Y., Seitkhan A., Mottram A. D., Pattanasattayavong P., Faber H., Heeney M., Anthopoulos T. D., Adv. Mater., 2021, 34, 2104608

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pan Y., Zhang W., Zhou Y., Wei X., Luo H., Wei J., Wang L., Yu G., CCS Chem., 2023, DOI: https://doi.org/10.31635/ccschem.023.202202574

  11. Yao Y., Chen Y., Wang H., Samorì P., SmartMat., 2020, 1, e1009

    Article  Google Scholar 

  12. Lin X., Liu R., Ding C., Deng J., Guo Y., Long S., Li L., Li M., Chinese J. Chem., 2021, 39, 3079

    Article  CAS  Google Scholar 

  13. Zhang W.-N., Wu X.-Q., Wang G., Duan Y.-A., Geng H., Liao Y., Chinese J. Polym. Sci., 2022, 40, 355

    Article  Google Scholar 

  14. Zheng Z., Zhang H., Zhai T., **a F., Chinese J. Chem., 2021, 39, 999

    Article  CAS  Google Scholar 

  15. **a X., Lei T., Pei J., Liu C. J., Chin. J. Org. Chem., 2014, 34, 1905

    Article  CAS  Google Scholar 

  16. Kim Z. S., Lim S. C., Kim S. H., Yang Y. S., Hwang D. H., Sensors(Basel), 2012, 12, 11238

    Article  CAS  PubMed  Google Scholar 

  17. Jeong J., Essafi M., Lee C., Haoues M., Diouani M. F., Kim H., Kim Y., J. Hazard Mater., 2018, 355, 17

    Article  CAS  PubMed  Google Scholar 

  18. Zhu M. L., Guo Y. L., Liu Y. Q., Sci. China Chem., 2022, 65, 1225

    Article  CAS  Google Scholar 

  19. Qin M. C., Li Q. Y., Zhang F., Kuang J. H., Liu K., Liu Y. W., Zhu M. L., Zhao Z. Y., Pan Z. C., Bian Y. S., Guo Y. L., Liu Y. Q., Acta Polym. Sin., 2022, 53, 405

    CAS  Google Scholar 

  20. Zhang J., Yang M., Xu Z., Bao Y., Wu Y., Wang Y., Meng X., Ju X., Gu Y., Li Y., Chem. Res. Chinese Universities, 2006, 22(3), 308

  21. Su P., Chen X. N., He Z. J., Yang Y., Chem. Res. Chinese Universities, 2017, 33(6), 876

    Article  CAS  Google Scholar 

  22. Li X. H., **an Y. Z., Min H., Li C. X., **e Z. H., Zhang F. F., ** L. T., Chem. Res. Chinese Universities, 2006, 22(4), 474

    Article  CAS  Google Scholar 

  23. Liu Z. C., Zhang Y. F., **e Y., Sun Y., Bi K. W., Cui Z., Zhao L. J., Fan W. F., Chem. Res. Chinese Universities, 2017, 33(5), 714

    Article  CAS  Google Scholar 

  24. Ma L., Chen B., Guo Y., Liang Y., Zeng D., Zhan X., Liu Y., Chen X., J. Mater. Chem. C, 2018, 6, 13049

    Article  CAS  Google Scholar 

  25. Ma L., Yi Z., Wang S., Liu Y., Zhan X., J. Mater. Chem. C, 2015, 3, 1942

    Article  CAS  Google Scholar 

  26. Zheng L., Li J., Wang Y., Gao X., Yuan K., Yu X., Ren X., Zhang X., Hu W., Nanoscale, 2019, 11, 7117

    Article  CAS  PubMed  Google Scholar 

  27. Choi H. H., Cho K., Daniel Frisbie C., Sirringhaus H., Podzorov V., Nat. Mater., 2018, 17, 2

    Article  CAS  Google Scholar 

  28. Liang Y. Y., Wu Y., Feng D. Q., Tsai S., Son H., Li G., Yu L. P., J. Am. Chem. Soc., 2009, 131, 56

    Article  CAS  PubMed  Google Scholar 

  29. Fan C., Zoombelt A. P., Jiang H., Fu W., Wu J., Yuan W., Wang Y., Li H., Chen H., Bao Z., Adv. Mater., 2013, 25, 5762

    Article  CAS  PubMed  Google Scholar 

  30. Huo L., Chen T. L., Zhou Y., Hou J., Chen H. Y., Yang Y., Li Y., Macromolecules, 2009, 42, 4377

    Article  CAS  Google Scholar 

  31. Shi S., **e X., Gao C., Shi K., Chen S., Yu G., Guo L., Li X., Wang H., Macromolecules, 2014, 47, 616

    Article  CAS  Google Scholar 

  32. Gu P., Hu M., Ding S., Zhao G., Yao Y., Liu F., Zhang X., Dong H., Wang X., Hu W., Chinese Chem. Lett., 2018, 29, 1675

    Article  CAS  Google Scholar 

  33. Ma X., Sun Z., Su W., Yi Z., Cui X., Guo B., Li X., J. Mater. Chem. B, 2018, 6, 3811

    Article  CAS  PubMed  Google Scholar 

  34. Woo K., Kang W., Lee K., Lee P., Kim Y., Yoon T. S., Cho C. Y., Park K. H., Ha M. W., Lee H. H., Biosens. Bioelectron., 2020, 159, 112186

    Article  CAS  PubMed  Google Scholar 

  35. Sun C., Wang Y. X., Sun M., Zou Y., Zhang C., Cheng S., Hu W., Biosens. Bioelectron., 2020, 164, 112251

    Article  CAS  PubMed  Google Scholar 

  36. Gao S. H., Zhu K. Y., Zhang Q. F., Niu Q. J., Chong J. H., Ren L. X., Yuan X. Y., Biomacromolecules, 2022, 23, 530

    Article  PubMed  Google Scholar 

  37. Cheng S., Hotani K., Hideshima S., Kuroiwa S., Nakanishi T., Hashimoto M., Mori Y., Osaka T., Materials(Basel), 2014, 7, 2490

    Article  PubMed  Google Scholar 

  38. Adamczyk M., Moore J. A., Yu Z., Methods, 2000, 20, 319

    Article  CAS  PubMed  Google Scholar 

  39. Khan H. U., Jang J., Kim J. J., Knoll W., J. Am. Chem. Soc., 2011, 133, 2170

    Article  CAS  PubMed  Google Scholar 

  40. Sun C., Li R., Song Y., Jiang X., Zhang C., Cheng S., Hu W., Anal. Chem., 2021, 93, 6188

    Article  CAS  PubMed  Google Scholar 

  41. Stern E., Wagner R., Sigworth F. J., Breaker R., Fahmy T. M., Reed M. A., Nano Lett., 2007, 7, 3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chua J., Chee R., Agarwal A., Wong S. M., Zhang G. J., Anal. Chem., 2009, 81, 6265

    Article  Google Scholar 

  43. Kaisti M., Biosens. Bioelectron., 2017, 98, 437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.22275068, 21975178) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulan Chen or Shanshan Cheng.

Ethics declarations

The authors declare no conflicts of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, X., Duan, Y., Chen, Y. et al. Bioassay of Carcinoembryonic Antigens by Organic Field-effect Transistors Based on D-A Type Conjugated Polymer. Chem. Res. Chin. Univ. 39, 877–883 (2023). https://doi.org/10.1007/s40242-023-3115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3115-0

Keywords

Navigation