Log in

Toward High Performance Ambipolar Transport from Super-exchange Perspective: Theoretical Insights for IID-based Copolymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices, and simplify circuit design and device structure. In order to obtain ambipolar donor-acceptor (D-A) polymer, many efforts have been made through different donor and acceptor combination, halogenation or heteroatom substitution. However, the influencing factor for charge transport polarity is still much complicated. Based on intra-chain super-exchange mechanism for D-A polymer, we found that the energy alignment of donor and acceptor moiety has large impact on charge transport polarity. When the HOMO-LUMO (H-L) gap of the acceptor moiety is narrow, its HOMO/LUMO energy level both lie between the HOMO and LUMO of the donor moiety (sandwich-type energy alignment), and the corresponding D-A copolymers will be more likely ambipolar transport. And thus, take a narrow H-L gap thiazoleisoindigo (TzIID) acceptor as an example, we demonstrated that a series of TzIID based copolymers combined with wide H-L gap donor moieties can reveal ambipolar transport. We further predict several high performance ambipolar D-A copolymers (TzIID-TT etc.) with balanced electron and hole transport, whose effective mass (me*=0.146 and mh*=0.128) is one of the smallest effective masses among ambipolar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G.; Chang, W. H.; Yang, Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2017, 2, 17043.

    Article  CAS  Google Scholar 

  2. Sun, C K.; Pan, F.; Bin, H. J.; Zhang, J. Q.; Xue, L. W.; Qiu, B. B.; Wei, Z. X.; Zhang, Z. G.; Li, Y. F. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, T.; An, C. B.; Bi, P. Q.; Lv, Q. L.; Qin, J. Z.; Hong, L.; Cui, Y.; Zhang, S. Q.; Hou, J. H. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell. Adv. Energy Mater. 2021, 11, 2101705.

    Article  CAS  Google Scholar 

  4. Zhu, C.; Meng, L.; Zhang, J. Y.; Qin, S. C.; Lai, W. B.; Qiu, B. B.; Yuan, J.; Wan, Y.; Huang, W. C.; Li, Y. F. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 2021, 33, 2100474.

    Article  CAS  Google Scholar 

  5. Kawashima, K.; Tamai, Y.; Ohkita, H.; Osaka, I.; Takimiya, K. High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 2015, 6, 10085.

    Article  CAS  PubMed  Google Scholar 

  6. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y. F.; Zou, Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  7. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 2020, 30, 1904545.

    Article  CAS  Google Scholar 

  8. Shi, D. D.; Liu, Z. T.; Ma, J.; Zhao, Z. Y.; Tan, L. X.; Lin, G. B.; Tian, J. W.; Zhang, X. S.; Zhang, G. X.; Zhang, D. Q. Half-fused diketopyrrolopyrrole-based conjugated donor-acceptor polymer for ambipolar field-effect transistors. Adv. Funct. Mater. 2020, 30, 1910235.

    Article  CAS  Google Scholar 

  9. Ni, Z.; Dong, H.; Wang, H.; Ding, S.; Zou, Y.; Zhao, Q.; Zhen, Y.; Liu, F.; Jiang, L.; Hu, W. Quinoline-Flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2V−1s−1 in flexible thin film devices. Adv. Mater. 2018, 30, 1704843.

    Article  Google Scholar 

  10. Ni, Z.; Wang, H.; Zhao, Q.; Zhang, J.; Wei, Z.; Dong, H.; Hu, W. Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step CH activation strategy. Adv. Mater. 2019, 31, e1806010.

    Article  PubMed  Google Scholar 

  11. Guo, X. G.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928.

    Article  CAS  PubMed  Google Scholar 

  12. Baeg, K. J.; Caironi, M.; Noh, Y. Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater. 2013, 25, 4210–4244.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas, T. H.; Harkin, D. J.; Gillett, A. J.; Lemaur, V.; Nikolka, M.; Sadhanala, A.; Richter, J. M.; Armitage, J.; Chen, H.; McCulloch, I.; Menke, S. M.; Olivier, Y.; Beljonne, D.; Sirringhaus, H. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 2019, 10, 2614.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pace, G.; Bargigia, I.; Noh, Y. Y.; Silva, C.; Caironi, M. Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nat. Commun. 2019, 10, 5226.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, P.; Wang, H. L.; Ma, L. C.; Xu, L.; **ao, F.; Yi, Z. R.; Liu, Y. Q.; Wang, S. An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors. Sci. China Chem. 2016, 59, 679–683.

    Article  CAS  Google Scholar 

  16. Xu, L.; Zhao, Z. Y.; **ao, M. C.; Yang, J.; **ao, J.; Yi, Z. R.; Wang, S.; Liu, Y. Q. π-Extended isoindigo-based derivative: a promising electron deficient building block for polymer semiconductors. ACS Appl. Mater. Interfaces 2017, 9, 40549–40555.

    Article  CAS  PubMed  Google Scholar 

  17. Yi, Z. R.; Jiang, Y. Y.; Xu, L.; Zhong, C.; Yang, J.; Wang, Q. J.; **ao, J. W.; Liao, X. M.; Wang, S.; Guo, Y. L.; Hu, W. P.; Liu, Y. Q. Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters. Adv. Mater. 2018, 30, 1801951.

    Article  Google Scholar 

  18. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; **ao, Z.; Ding, L.; **a, R. Organic and solution-processed tandem solar cells with 17. 3% efficiency. Science 2018, 361, 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J.; Jiang, Y. Q.; Tu, Z. Y.; Zhao, Z. Y.; Chen, J. Y.; Yi, Z. R.; Li, Y. F.; Wang, S.; Yi, Y. P.; Guo, Y. L.; Liu, Y. Q. High-performance ambipolar polymers based on electron-withdrawing group substituted bay-annulated indigo. Adv. Funct. Mater. 2019, 29, 1804839.

    Article  Google Scholar 

  20. Kim, M.; Park, W. T.; Park, S. A.; Park, C. W.; Ryu, S. U.; Lee, D. H.; Noh, Y. Y.; Park, T. Controlling ambipolar charge transport in isoindigo-based conjugated polymers by altering fluorine substitution position for high-performance organic field-effect transistors. Adv. Funct. Mater. 2019, 29, 1805994.

    Article  Google Scholar 

  21. Zhang, W. F.; Shi, K. L.; Wei, C. Y.; Zhou, Y. K.; Wang, L. P.; Yu, G. Tuning carrier transport properties of thienoisoindigo-based copolymers by loading fluorine atoms onto the diarylethylene-based electron-donating units. Polymer 2017, 132, 12–22.

    Article  CAS  Google Scholar 

  22. Yi, Z.; Sun, X.; Zhao, Y.; Guo, Y.; Chen, X.; Qin, J.; Yu, G.; Liu, Y. Diketopyrrolopyrrole-based π-conjugated copolymer containing β-unsubstituted quintetthiophene unit: a promising material exhibiting high hole-mobility for organic thin-film transistors. Chem. Mater. 2012, 24, 4350–4356.

    Article  CAS  Google Scholar 

  23. He, F.; Cheng, C.; Geng, H.; Yi, Y.; Shuai, Z. Effect of donor length on electronic structures and charge transport polarity for DTDPP-based D-A copolymers: a computational study based on a super-exchange model. J. Mater. Chem. A 2018, 6, 11985–11993.

    Article  CAS  Google Scholar 

  24. Lei, T.; Dou, J. H.; Ma, Z. J.; Liu, C. J.; Wang, J. Y.; Pei, J. Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem. Sci. 2013, 4, 2447–2452.

    Article  CAS  Google Scholar 

  25. Yang, J.; Zhao, Z.; Geng, H.; Cheng, C.; Chen, J.; Sun, Y.; Shi, L.; Yi, Y. Q.; Shuai, Z.; Guo, Y.; Wang, S.; Liu, Y. Q. Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv. Mater. 2017, 29, 1702115.

    Article  Google Scholar 

  26. Jiang, Y. Y.; Chen, J. Y.; Sun, Y. L.; Li, Q. Y.; Cai, Z. X.; Li, J. Y.; Guo, Y. L.; Hu, W. P.; Liu, Y. Q. Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors. Adv. Mater. 2019, 31, 1805761.

    Article  Google Scholar 

  27. Yue, W.; Nikolka, M.; **ao, M. F.; Sadhanala, A.; Nielsen, C. B.; White, A. J. P.; Chen, H. Y.; Onwubiko, A.; Sirringhaus, H.; McCulloch, I. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications. J. Mater. Chem. C 2016, 4, 9704–9710.

    Article  CAS  Google Scholar 

  28. Huang, J. Y.; Chen, Z. H.; Mao, Z. P.; Gao, D.; Wei, C. Y.; Lin, Z. Z.; Li, H.; Wang, L. P.; Zhang, W. F.; Yu, G. Tuning frontier orbital energetics of azaisoindigo-based polymeric semiconductors to enhance the charge-transport properties. Adv. Electr. Mater. 2017, 3, 1700078.

    Article  Google Scholar 

  29. Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14. 4 cm2/V.s that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 2014, 136, 9477–9483.

    Article  CAS  PubMed  Google Scholar 

  30. Yun, H. J.; Choi, H. H.; Kwon, S. K.; Kim, Y. H.; Cho, K. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones. ACS Appl. Mater. Interfaces 2015, 7, 5898–5906.

    Article  CAS  PubMed  Google Scholar 

  31. Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Lan, Z.; Pei, J.; Wan, X. Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers. Chem. Eur. J. 2018, 24, 9807–9811.

    Article  CAS  PubMed  Google Scholar 

  32. Li, C. C.; **ong, M.; Peng, J. W.; Wang, J. Y.; Zhang, H. R.; Mu, Y. B.; Pei, J.; Wan, X. B. Finely tuned electron/hole transport preference of thiazoloisoindigo-based conjugated polymers by incorporation of heavy chalcogenophenes. Chinese J. Polym. Sci. 2021, 39, 838–848.

    Article  CAS  Google Scholar 

  33. Liu, M. J.; Qiang, Y. C.; Li, W. H.; Qiu, F.; Shi, A. C. Stabilizing the Frank-Kasper phases via binary blends of ab diblock copolymers. ACS Macro Lett. 2016, 5, 1167–1171.

    Article  CAS  Google Scholar 

  34. Mladenovic, M.; Vukmirovic, N. Charge carrier localization and transport in organic semiconductors: insights from atomistic multiscale simulations. Adv. Funct. Mater. 2015, 25, 1915–1932.

    Article  CAS  Google Scholar 

  35. Yan, X. W.; **ong, M.; Deng, X. Y.; Liu, K. K.; Li, J. T.; Wang, X. Q.; Zhang, S.; Prine, N.; Zhang, Z. Q.; Huang, W. Y.; Wang, Y. S.; Wang, J. Y.; Gu, X. D.; So, S. K.; Zhu, J.; Lei, T. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 2021, 12, 5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, Y.; Jung, J. W.; Kang, H.; Seth, J.; Kang, Y.; Sung, M. M. Single-crystal poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] nanowires with ultrahigh mobility. Nano Lett. 2019, 19, 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  37. Tseng, H. R.; Ying, L.; Hsu, B. B.; Perez, L. A.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett. 2012, 12, 6353–6771.

    Article  CAS  PubMed  Google Scholar 

  38. Luo, C.; Kyaw, A. K.; Perez, L. A.; Patel, S.; Wang, M.; Grimm, B.; Bazan, G. C.; Kramer, E. J.; Heeger, A. J. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 2014, 14, 2764–2771.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Y. Y.; Ning, L.; Liu, C. A.; Sun, Y. L.; Li, J. Y.; Liu, Z. T.; Yi, Y. P.; Qiu, D.; He, C. Y.; Guo, Y. L.; Hu, W. P.; Liu, Y. Q. Alignment of linear polymeric grains for highly stable N-type thin-film transistors. Chem 2021, 7, 1258–1270.

    Article  CAS  Google Scholar 

  40. Hsu, B. B. Y.; Cheng, C. M.; Luo, C.; Patel, S. N.; Zhong, C.; Sun, H. T.; Sherman, J.; Lee, B. H.; Ying, L.; Wang, M.; Bazan, G.; Chabinyc, M.; Bredas, J. L.; Heeger, A. The density of states and the transport effective mass in a highly oriented semiconducting polymer: electronic delocalization in 1D. Adv. Mater. 2015, 27, 7759–7765.

    Article  CAS  PubMed  Google Scholar 

  41. Qin, T.; Troisi, A. Relation between structure and electronic properties of amorphous MEH-PPV polymers. J. Am. Chem. Soc. 2013, 135, 11247–11256.

    Article  CAS  PubMed  Google Scholar 

  42. Schott, S.; Gann, E.; Thomsen, L.; Jung, S. H.; Lee, J. K.; McNeill, C. R.; Sirringhaus, H. Charge-transport anisotropy in a uniaxially aligned diketopyrrolopyrrole-based copolymer. Adv. Mater. 2015, 27, 7356–7364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frost, J. M.; Kirkpatrick, J.; Kirchartz, T.; Nelson, J. Parameter free calculation of the subgap density of states in poly(3-hexylthiophene). Faraday Discuss 2014, 174, 255–266.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238.

    Article  PubMed  Google Scholar 

  45. Senanayak, S. P.; Ashar, A. Z.; Kanimozhi, C.; Patil, S.; Narayan, K. S. Room-temperature bandlike transport and Hall effect in a high-mobility ambipolar polymer. Phys. Rev. B 2015, 91, 115302.

    Article  Google Scholar 

  46. Lee, J. Physical modeling of charge transport in conjugated polymer field-effect transistors. J. Phys. D Appl. Phys. 2021, 54, 143002.

    Article  CAS  Google Scholar 

  47. Sato, M.; Kumada, A.; Hidaka, K. Multiscale modeling of charge transfer in polymers with flexible backbones. Phys. Chem. Chem. Phys. 2019, 21, 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  48. Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502.

    Article  CAS  PubMed  Google Scholar 

  49. Symalla, F.; Friederich, P.; Masse, A.; Meded, V.; Coehoorn, R.; Bobbert, P.; Wenzel, W. Charge transport by superexchange in molecular host-guest systems. Phys. Rev. Lett. 2016, 117, 276803.

    Article  PubMed  Google Scholar 

  50. Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation. Adv. Mater. 2015, 27, 6753–6759.

    Article  CAS  PubMed  Google Scholar 

  51. Geng, H.; Zhu, L.; Yi, Y.; Zhu, D.; Shuai, Z. Superexchange induced charge transport in organic donor-acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 2019, 31, 6424–6434.

    Article  CAS  Google Scholar 

  52. Cheng, C.; Geng, H.; Yi, Y.; Shuai, Z. Super-exchange-induced high performance charge transport in donor-acceptor copolymers. J. Mater. Chem. C 2017, 5, 3247–3253.

    Article  CAS  Google Scholar 

  53. Guo, Y.; Han, G.; Tu, Z.; Yi, Y. Electronic and optical properties of π-bridged perylenediimide derivatives: the role of π-bridges. J. Mater. Chem. A 2019, 7, 12532–12537.

    Article  CAS  Google Scholar 

  54. Yong, X.; Wu, G.; Shi, W.; Wong, Z. M.; Deng, T.; Zhu, Q.; Yang, X.; Wang, J. S.; Xu, J.; Yang, S. W. Theoretical search for highperformance thermoelectric donor-acceptor copolymers: the role of super-exchange couplings. J. Mater. Chem. A 2020, 8, 21852–21861.

    Article  CAS  Google Scholar 

  55. Frisch, A. Gaussian 09w reference. Wallingford, USA, 2009, p 25.

  56. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

    Article  CAS  Google Scholar 

  57. Chen, M. S.; Niskala, J. R.; Unruh, D. A.; Chu, C. K.; Lee, O. P.; Fréchet, J. M. J. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity. Chem. Mater. 2013, 25, 4088–4096.

    Article  CAS  Google Scholar 

  58. Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Diazaisoindigo-based polymers with high-performance chargetransport properties: from computational screening to experimental characterization. Chem. Mater. 2016, 28, 2209–2218.

    Article  CAS  Google Scholar 

  59. Huang, J.; Wang, K.; Gupta, S.; Wang, G.; Yang, C.; Mushrif, S. H.; Wang, M. Thienoisoindigo-based small molecules and narrow bandgap polymers synthesized via C-H direct arylation coupling. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2015–2031.

    Article  CAS  Google Scholar 

  60. Kim, G.; Kim, H.; Jang, M.; Jung, Y. K.; Oh, J. H.; Yang, C. Ultra-narrow-bandgap thienoisoindigo polymers: structure-property correlations in field-effect transistors. J. Mater. Chem. C 2016, 4, 9554–9560.

    Article  CAS  Google Scholar 

  61. Jiang, Z.; Ni, Z.; Wang, H.; Wang, Z.; Zhang, J.; Qiu, G.; Fang, J.; Zhang, Y.; Dong, H.; Lu, K.; Hu, W.; Wei, Z. Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polym. Chem. 2017, 8, 5603–5610.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China (Nos. 2017YFA0204700 and 2017YFA0204502) and the National Natural Science Foundation of China (No. 22090022), Bei**g Municipal natural science Foundation (No. 2192013) and Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (Nos. 19530012018 and 19530011018), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Geng or Yi Liao.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2680_MOESM1_ESM.pdf

Toward High Performance Ambipolar Transport from Super-exchange Perspective: Theoretical Insights for IID-based Copolymers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WN., Wu, XQ., Wang, G. et al. Toward High Performance Ambipolar Transport from Super-exchange Perspective: Theoretical Insights for IID-based Copolymers. Chin J Polym Sci 40, 355–364 (2022). https://doi.org/10.1007/s10118-022-2680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2680-x

Keywords

Navigation