Log in

Recent advancements in adsorptive removal of organophosphate pesticides from aqueous phase using nanomaterials

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Organophosphates (OPs) being the most widely used (~ 36%) pesticides, are infamous for presence of their traces in surface waters and serious health hazards to humans and animals. Hence, rapid, efficient, easy to use, and cost-effective methods must be explored for their remediation in contaminated waters. Amongst the different pesticide removal methods, adsorption is extensively used as it is economic unit process which is easy to operate and renders no residual by-product. Moreover, nano-sized adsorbents with novel physico-chemical properties may even be more effectively employed for sorptive removal of OPPs in contaminated waters. The review provides an overview of organophosphate pesticides (OPPs) in terms of usage, environmental contamination, and toxicity. Nanomaterials (e.g., carbon nano-structures, metal nanoparticles and oxides, quantum dots, and metal organic frameworks) categorized into inorganic, organic, and hybrid nanomaterials employed for adsorptive removal of OPPs from aqueous phase have been discussed. The parameters that determine their adsorption efficiency have been discussed, calculated, and compared for different nanostructures. The operating mechanisms behind adsorption of OPPs on nanomaterials are mainly electrostatic interactions, H-bonding, and Π-Π stacking (carbon-based nanomaterials), and exchange or sharing of electrons between vacant active site of nanocomposite and OPP molecules (in case of hybrid materials). Diffusion mechanism and rate-limiting steps have been explored via intra-particle diffusion model. The factors influencing the efficiency of adsorbents such as pH, temperature, adsorbent concentration, and incubation time have also been included. The review further recapitulates the details of thermodynamic studies of adsorption process which give information about the spontaneity and exothermic/endothermic nature of the process. The review concludes with summary and future prospects of sorptive removal of OPPs in water.

Graphical abstract

Adsorption of OPPs onto different nanosorbents via variety of interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced from Ref [77] with permission from Elsevier

Fig. 6

Reproduced from Ref. [80] with permission from the ACS Publications

Fig. 7

Reproduced from Ref. [39] with permission from the Royal Society of Chemistry

Fig. 8

Reproduced from Ref. [64] with permission from Elsevier

Similar content being viewed by others

References

  1. Sukirtha, T.H., Usharani, M.V.: Production and qualitative analysis of biosurfactant and biodegradation of the organophosphate by Nocardia mediterranei. J. Bioremediat. Biodegrad. 4, 198/1-198/8 (2013)

    Google Scholar 

  2. Costa, L.G.: Current issues in organophosphate toxicology. Clin. Chim. Acta. 366, 1–13 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Hreljac, I., Filipič, M.: Organophosphorus pesticides enhance the genotoxicity of benzo (a) pyrene by modulating its metabolism. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 671, 84–92 (2009)

    Article  CAS  Google Scholar 

  4. Sidhu, G.K., Singh, S., Kumar, V., Dhanjal, D.S., Datta, S., Singh, J.: Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit. Rev. Env. Sci. Technol. 49, 1135–1187 (2019)

    Article  CAS  Google Scholar 

  5. Markus, A., Gbadamosi, A.O., Yusuff, A.S., Agi, A., Oseh, J.: Magnetite-sporopollenin/graphene oxide as new preconcentration adsorbent for removal of polar organophosphorus pesticides in vegetables. Environ. Sci. Pollut. Res. 25, 35130–35142 (2018)

    Article  CAS  Google Scholar 

  6. Sullivan Jr, J.B.: Organophosphate and carbamate insecticides. Hazardous materials toxicology: Clinical principles of environmental health. Baltimore, Maryland: Williams and Wilkins, 1015–1026 (1992)

  7. Aslan, S., Cakir, Z., Emet, M., Serinken, M., Karcioglu, O., Kandis, H., Uzkeser, M.: Acute abdomen associated with organophosphate poisoning. J. Emerg. Med. 41, 507–512 (2011)

    Article  PubMed  Google Scholar 

  8. Gupta, S., Stravitz, R.T., Dent, P., Hylemon, P.B.: Down-regulation of cholesterol 7α-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J. Biol. Chem. 276, 15816–15822 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Rom, W. N., Markowitz, S. B. (eds.): Environmental and occupational medicine. 4th edition. Lippincott Williams & Wilkins, Philadelphia, PA (2007)

  10. He, F.E.N.G.S.H.E.N.G.: Neurotoxic effects of insecticides–current and future research: a review. Neurotoxicology 21, 829–835 (2000)

    CAS  PubMed  Google Scholar 

  11. Brown, L.M., Blair, A., Gibson, R., Everett, G.D., Cantor, K.P., Schuman, L.M., Burmeister, L.F., Van Lier, S.F., Dick, F.: Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 50, 6585–6591 (1990)

    CAS  PubMed  Google Scholar 

  12. Waddell, B.L., Zahm, S.H., Baris, D., Weisenburger, D.D., Holmes, F., Burmeister, L.F., Cantor, K.P., Blair, A.: Agricultural use of organophosphate pesticides and the risk of non-Hodgkin’s lymphoma among male farmers (United States). Cancer Causes Control 12, 509–517 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Bolognesi, C.: Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 543, 251–272 (2003)

    CAS  Google Scholar 

  14. Cabello, G., Valenzuela, M., Vilaxa, A., Durán, V., Rudolph, I., Hrepic, N., Calaf, G.: A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition. Environ. Health Perspect. 109, 471–479 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Isoda, H., Talorete, T.P., Han, J., Oka, S., Abe, Y., Inamori, Y.: Effects of organophosphorous pesticides used in china on various mammalian cells. Environ. Sci. 12, 9–19 (2005)

    CAS  PubMed  Google Scholar 

  16. Giordano, G., Afsharinejad, Z., Guizzetti, M., Vitalone, A., Kavanagh, T.J., Costa, L.G.: Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol. Appl. Pharmacol. 219, 181–189 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Rahman, M.F., Mahboob, M., Danadevi, K., Banu, B.S., Grover, P.: Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat. Res. Fundam. Mol. Mech. 516, 139–147 (2002)

    CAS  Google Scholar 

  18. Kang, H.G., Jeong, S.H., Cho, J.H., Kim, D.G., Park, J.M., Cho, M.H.: Chlorpyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats. Toxicology 199, 219–230 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Yeh, S.P., Sung, T.G., Chang, C.C., Cheng, W., Kuo, C.M.: Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture 243, 383–392 (2005)

    Article  CAS  Google Scholar 

  20. Blasiak, J., Kowalik, J.: Effect of paraoxon-methyl and parathion-methyl on DNA in human lymphocytes and protective action of vitamin C. Pestic. Sci. 55, 1182–1186 (1999)

    Article  CAS  Google Scholar 

  21. Ündeğer, Ü., Başaran, N.: Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch. Toxicol. 79, 169–176 (2005)

    Article  PubMed  Google Scholar 

  22. Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J.: Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ. Mol. Mutagen. 10, 1–35 (1987)

    Article  CAS  PubMed  Google Scholar 

  23. Mathew, G., Vijayalaxmi, K.K., Rahiman, M.A.: Methyl parathion-induced sperm shape abnormalities in mouse. Mutat. Res. Genet. Toxicol. 280, 169–173 (1992)

    Article  CAS  Google Scholar 

  24. Sobarzo, C., Bustos-Obregón, E.: Sperm quality in mice acutely treated with parathion. Asian J. Androl. 2, 147–150 (2000)

    CAS  PubMed  Google Scholar 

  25. Jaiswal, M., Chauhan, D., Sankararamakrishnan, N.: Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ. Sci. Pollut. Res. 19, 2055–2062 (2012)

    Article  CAS  Google Scholar 

  26. Manimegalai, G., Shanthakumar, S., Sharma, C.: Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support. Int. Nano Lett. 4, 1–5 (2014)

    Article  CAS  Google Scholar 

  27. Foo, K.Y., Hameed, B.H.: Detoxification of pesticide waste via activated carbon adsorption process. J. Hazard. Mater. 175, 1–11 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. Clausen, L., Fabricius, I., Madsen, L.: Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina. J. Environ. Qual. 30, 846–857 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Wang, S., Sun, H., Ang, H.M., Tadé, M.O.: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336–347 (2013)

    Article  CAS  Google Scholar 

  30. Armor, J.N.: Environmental catalysis. Appl. Catal. B 1, 221–256 (1992)

    Article  CAS  Google Scholar 

  31. Matatov-Meytal, Y.I., Sheintuch, M.: Catalytic abatement of water pollutants. Ind. Eng. Chem. Res. 37, 309–326 (1998)

    Article  CAS  Google Scholar 

  32. Inglezakis, V., Poulopoulos, S.: Adsorption, ion exchange and catalysis. In: (eds.) Design of operations and environmetal applications, pp. 498–520. Elsevier, Amsterdam (2006)

  33. Smith, A.M., Duan, H., Rhyner, M.N., Ruan, G., Nie, S.: A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 8, 3895–3903 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Ali, I., Asim, M., Khan, T.A.: Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage. 113, 170–183 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Puri, B.R., Bansal, R.C., Bhardwaj, S.S.: Interaction of nitrogen-dioxide with different charcoals. Indian J. Chem. 11, 1168–1169 (1973)

    CAS  Google Scholar 

  36. Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., Phanichphant, S.: Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B Chem. 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  37. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    Article  CAS  Google Scholar 

  38. Kalantary, R.R., Azari, A., Esrafili, A., Yaghmaeian, K., Moradi, M., Sharafi, K.: The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study. Desalin. Water Treat. 57, 28460–28473 (2016)

    Article  CAS  Google Scholar 

  39. Abdelhameed, R.M., Abdel-Gawad, H., Elshahat, M., Emam, H.E.: Cu–BTC@ cotton composite: design and removal of ethion insecticide from water. RSC Adv. 6, 42324–42333 (2016)

    Article  CAS  Google Scholar 

  40. Liu, G., Li, L., Huang, X., Zheng, S., Xu, X., Liu, Z., Zhang, Y., Wang, J., Lin, H., Xu, D.: Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes@ organic framework ZIF-8. J. Mater. Sci. 53, 10772–10783 (2018)

    Article  CAS  Google Scholar 

  41. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319–326 (2006)

    Article  CAS  Google Scholar 

  42. Ho, Y.S., McKay, G.: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76, 332–340 (1998)

    Article  CAS  Google Scholar 

  43. Wu, F.C., Tseng, R.L., Juang, R.S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009)

    Article  CAS  Google Scholar 

  44. Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M.: Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22, 249–275 (2007)

    Article  CAS  Google Scholar 

  45. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  46. Kavitha, D., Namasivayam, C.: Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98, 14–21 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Salman, J.M., Hameed, B.H.: Adsorption of 2, 4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 256, 129–135 (2010)

    Article  CAS  Google Scholar 

  48. Simonin, J.P.: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Biochem. Eng. J. 300, 254–263 (2016)

    CAS  Google Scholar 

  49. Hamoudi, S. A., Hamdi, B., Brendlé, J.: Removal of ions Pb2+ and Cd2+ from aqueous solution by containment geomaterials. In (eds.) Exergetic, energetic and environmental dimensions, pp. 1029–1043. Academic Press (2018)

  50. Robati, D.: Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostructure. Chem. 3, 1–6 (2013)

    Article  Google Scholar 

  51. Khanna, V. K.: Nanomaterials and their Properties. In Integrated Nanoelectronics, Springer, 25–41 (2016)

  52. Du, D., Chen, S., Song, D., Li, H., Chen, X.: Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens. Bioelectron. 24, 475–479 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Kumar, P., Paul, A.K., Deep, A.: Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5. Microporous Mesoporous Mater. 195, 60–66 (2014)

    Article  CAS  Google Scholar 

  54. Liu, G., Wang, S., Liu, J., Song, D.: An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal. Chem. 84, 3921–3928 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. Wang, X., Cao, Y., Chen, D., Zhao, G., Sun, X.: An amperometric immunosensor based on graphene composite film and protein a for chlorpyrifos detection. Sens. Transducers 178, 47 (2014)

    Google Scholar 

  56. Nair, A.S., Tom, R.T., Pradeep, T.: Detection and extraction of endosulfan by metal nanoparticles. J. Environ. Monit. 5, 363–365 (2003)

    Article  PubMed  Google Scholar 

  57. Huang, X., Liu, J., Shao, D., Pi, Z., Yu, Z.: Rectangular mode of operation for detecting pesticide residue by using a single SnO2-based gas sensor. Sens. Actuators B Chem. 96, 630–635 (2003)

    Article  CAS  Google Scholar 

  58. Saifuddin, N., Nian, C.Y., Zhan, L.W., Ning, K.X.: Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 6, 142–159 (2011)

    Article  CAS  Google Scholar 

  59. Nair, A.S., Pradeep, T.: Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J. Nanosci. Nanotechnol. 7, 1871–1877 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. Momić, T., Pašti, T.L., Bogdanović, U., Vodnik, V., Mraković, A., Rakočević, Z., Pavlovia, V.B., Vasić, V.: Adsorption of organophosphate pesticide dimethoate on gold nanospheres and nanorods. J. Nanomater. 2016, 1–1 (2016)

    Article  Google Scholar 

  61. Fouad, D.M., El-Said, W.A., Ali, M.H., El-Gahami, M.A.: Silica–gold nanocomposite for removal of organophosphorous pesticides. Plasmonics 12, 869–875 (2017)

    Article  CAS  Google Scholar 

  62. Mansouriieh, N., Sohrabi, M.R., Khosravi, M.: Adsorption kinetics and thermodynamics of organophosphorus profenofos pesticide onto Fe/Ni bimetallic nanoparticles. Int. J. Environ. Sci. Technol. 13, 1393–1404 (2016)

    Article  CAS  Google Scholar 

  63. Sahithya, K., Das, D., Das, N.: Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT–CuO composites: equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 211, 821–830 (2015)

    Article  CAS  Google Scholar 

  64. Sharma, L., Kakkar, R.: Hierarchical porous magnesium oxide (Hr-MgO) microspheres for adsorption of an organophosphate pesticide: kinetics, isotherm, thermodynamics, and DFT studies. ACS Appl. Mater. Interfaces 9, 38629–38642 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Hassanzadeh-Afruzi, F., Maleki, A., Zare, E.N.: Efficient remediation of chlorpyrifos pesticide from contaminated water by superparamagnetic adsorbent based on Arabic gum-grafted-polyamidoxime. Int. J. Biol. Macromol. 203, 445–456 (2022)

    Article  CAS  PubMed  Google Scholar 

  66. Ioannidou, O.A., Zabaniotou, A.A., Stavropoulos, G.G., Islam, M.A., Albanis, T.A.: Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere 80, 1328–1336 (2010)

    Article  CAS  PubMed  Google Scholar 

  67. De Martino, A., Iorio, M., **ng, B., Capasso, R.: Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Adv. 2, 5693–5700 (2012)

    Article  Google Scholar 

  68. Ghasemi, S., Karami, H., Khanezar, H.: Hydrothermal synthesis of lead dioxide/multiwall carbon nanotube nanocomposite and its application in removal of some organic water pollutants. J. Mater. Sci. 49, 1014–1024 (2014)

    Article  CAS  Google Scholar 

  69. Chen, G.C., Shan, X.Q., Pei, Z.G., Wang, H., Zheng, L.R., Zhang, J., **e, Y.N.: Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. J. Hazard. Mater. 188, 156–163 (2011)

    Article  CAS  PubMed  Google Scholar 

  70. Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., Hu, X.: Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem. Eng. J. 193, 339–347 (2012)

    Article  Google Scholar 

  71. Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. Atar, N., Eren, T., Yola, M.L., Karimi-Maleh, H., Demirdögen, B.: Magnetic iron oxide and iron oxide@ gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015)

    Article  CAS  Google Scholar 

  73. Maliyekkal, S.M., Sreeprasad, T.S., Krishnan, D., Kouser, S., Mishra, A.K., Waghmare, U.V., Pradeep, T.: Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9, 273–283 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Nodeh, H.R., Kamboh, M.A., Ibrahim, W.A.W., Jume, B.H., Sereshti, H., Sanagi, M.M.: Equilibrium, kinetic and thermodynamic study of pesticides removal from water using novel glucamine-calix [4] arene functionalized magnetic graphene oxide. Environ. Sci.: Process. Impacts. 21, 714–726 (2019)

    CAS  PubMed  Google Scholar 

  75. Wanjeri, V.W.O., Sheppard, C.J., Prinsloo, A.R.E., Ngila, J.C., Ndungu, P.G.: Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J. Environ. Chem. Eng. 6, 1333–1346 (2018)

    Article  CAS  Google Scholar 

  76. Hamadeen, H.M., Elkhatib, E.A.: Nanostructured modified biochar for effective elimination of chlorpyrifos from wastewater: Enhancement, mechanisms and performance. J. Water Process. Eng. 47, 102703 (2022)

    Article  Google Scholar 

  77. Singh, M., Rano, S., Roy, S., Mukherjee, P., Dalui, S., Gupta, G.K., Kumar, S., Mondal, M.K.: Characterization of organophosphate pesticide sorption of potato peel biochar as low-cost adsorbent for chlorpyrifos removal. Chemosphere 297, 134112 (2022)

    Article  CAS  PubMed  Google Scholar 

  78. Barreto, A.S., da Silva, R.L., dos Santos Silva, S.C.G., Rodrigues, M.O., de Simone, C.A., de Sá, G.F., Júnior, S.A., Nanickiene, S., de Mesquita, M.E.: Potential of a metal–organic framework as a new material for solid-phase extraction of pesticides from lettuce (Lactuca sativa), with analysis by gas chromatography-mass spectrometry. J. Sep. Sci. 33, 3811–3816 (2010)

    Article  CAS  PubMed  Google Scholar 

  79. Lange, L.E., Ochanda, F.O., Obendorf, S.K., Hinestroza, J.P.: CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers Polym. 15, 200–207 (2014)

    Article  CAS  Google Scholar 

  80. Zhu, X., Li, B., Yang, J., Li, Y., Zhao, W., Shi, J., Gu, J.: Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl. Mater. Interfaces. 7, 223–231 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. Yang, Q., Wang, J., Zhang, W., Liu, F., Yue, X., Liu, Y., Yang, M., Li, Z., Wang, J.: Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 313, 19–26 (2017)

    Article  CAS  Google Scholar 

  82. Yang, Q., Wang, J., Chen, X., Yang, W., Pei, H., Hu, N., Li, Z., Suo, Y., Li, T., Wang, J.: The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. 6, 2184–2192 (2018)

    Article  CAS  Google Scholar 

  83. Gupta, V.K., Jain, C.K., Ali, I., Chandra, S., Agarwal, S.J.W.R.: Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 36, 2483–2490 (2002)

    Article  CAS  PubMed  Google Scholar 

  84. Denizli, A., Cihangir, N., Tüzmen, N., Alsancak, G.: Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju. Bioresour. Technol. 96, 59–62 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. Moustafa, M., Abu-Saied, M.A., Taha, T., Elnouby, M., El-Shafeey, M., Alshehri, A.G., Alamri, S., Shati, A., Alrumman, S., Alghamdii, H., Al-Khatani, M.: Chitosan functionalized AgNPs for efficient removal of Imidacloprid pesticide through a pressure-free design. Int. J. Biol. Macromol. 168, 116–123 (2021)

    Article  CAS  PubMed  Google Scholar 

  86. Khakbaz, F., Mahani, M., Yoosefian, M.: Adsorption of diazinon using Cd-MOF nanoparticles before determination by UV-Vis spectrometer: isotherm, kinetic and thermodynamic study. Anal. Methods Environ. Chem. J. 5(02), 24–38 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SK would like to thank the HSCST, Govt. of Haryana, India (research grant vide letter No. HSCST/R&D/2018/2103 dated 01-08-2018), and DST-PURSE (Promotion of University Research and Scientific Excellence) via GJUS&T, Hisar, under the PURSE program SR/PURSE Phase 2/40(G). JM is grateful to CSIR for SRA fellowship (No. B-12587 Dates 01-08-2019). KHK acknowledges support made by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ITC (MSIT) of the Korean Government (Grant No: 2021R1A3BA1068304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki-Hyun Kim or Sandeep Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, J., Dhaka, R.K., Dilbaghi, N. et al. Recent advancements in adsorptive removal of organophosphate pesticides from aqueous phase using nanomaterials. J Nanostruct Chem 14, 53–70 (2024). https://doi.org/10.1007/s40097-022-00516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00516-y

Keywords

Navigation