Log in

Efficient sixth-order finite difference method for the two-dimensional nonlinear wave equation with variable coefficient

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this study, firstly, a sixth-order finite difference operator and correction technique of truncation error remainder are employed to construct a nonlinear high-order finite difference scheme and a linearized high-order finite difference scheme for solving the numerical solution of two-dimensional nonlinear wave equations with variable coefficients. Both new schemes have sixth-order accuracy in space and fourth-order accuracy in time. Then, the Richardson extrapolation technique is applied to obtain a numerical solution of sixth-order accuracy in both time and space. Meanwhile, the stability of the corresponding difference scheme for the linear wave equation is proved by Fourier analysis. In addition, two proposed sixth-order schemes are extended to solve the coupled sine-Gordon equations. Finally, some numerical experiments are presented to confirm the effectiveness and accuracy of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Drazin, P.J., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  2. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)

    Article  MathSciNet  Google Scholar 

  3. Sun, Y.: New exact traveling wave solutions for double sine-Gordon equation. Appl. Math. Comput. 258, 100–104 (2015)

    MathSciNet  Google Scholar 

  4. Jiwari, R., Pandit, S., Mittal, R.C.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)

    Article  MathSciNet  Google Scholar 

  5. Barbu, V., Pavel, N.H.: Periodic solutions to nonlinear one dimensional wave equation with x-dependent coefficients. Trans. Am. Math. Soc. 349, 2035–2048 (1997)

    Article  MathSciNet  Google Scholar 

  6. Abdelsalam, S.I., Bhatti, M.M.: Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Appl. Math. Mech. 41, 711–724 (2020)

    Article  MathSciNet  Google Scholar 

  7. Abdelsalam, S.I., Sohail, M.: Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic microorganisms. Pramana 94, 1–12 (2020)

    Article  Google Scholar 

  8. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    MathSciNet  Google Scholar 

  9. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons’’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  Google Scholar 

  10. Jagtap, A.D.: On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme. Appl. Anal. 100(1), 37–60 (2019)

    Article  MathSciNet  Google Scholar 

  11. Wazwaz, A.M.: Exact solutions for the generalized sine-Gordon and the generalized sine-Gordon equations. Chaos. Soliton. Fract. 28, 127–135 (2006)

    Article  Google Scholar 

  12. Aktosun, T., Demontis, F., Der Mee, C.V.: Exact solutions to the sine-Gordon equation. J. Math. Phys. 51, 123521 (2010)

    Article  MathSciNet  Google Scholar 

  13. Zhou, Q., Ekici, M., Mirzazadeh, M., Sonmezoglu, A.: The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics. J. Morden Opt. 64(16), 1677–1682 (2017)

    Article  Google Scholar 

  14. Belayeh, W.G., Mussa, Y.O., Gizaw, A.K.: Approximate analytic solutions of two-dimensional nonlinear Klein–Gordon equation by using the reduced differential transform method. Math. Probl. Eng. 2020, 5753974 (2020)

    Article  MathSciNet  Google Scholar 

  15. Deresse, A.T., Mussa, Y.O., Gizaw, A.K.: Analytical solution of two-dimensional sine-Gordon equation. Adv. Math. Phys. 2021, 6610021 (2021)

    Article  MathSciNet  Google Scholar 

  16. **e, S., Yi, S., Kwon, T.I.: Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. Comput. Phys. Commun. 183, 552–569 (2012)

    Article  MathSciNet  Google Scholar 

  17. Deng, D., Zhang, C.: A new fourth-order numerical algorithm for a class of nonlinear wave equations. Appl. Numer. Math. 62, 1864–1879 (2012)

    Article  MathSciNet  Google Scholar 

  18. Deng, D., Zhang, C.: Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations. Appl. Math. Model. 39, 1033–1049 (2015)

    Article  MathSciNet  Google Scholar 

  19. Deng, D.: Unified compact ADI methods for solving nonlinear viscous and nonviscous wave equations. Chin. J. Chem. Phys. 56, 2897–2915 (2018)

    Article  MathSciNet  Google Scholar 

  20. Cui, M.: High order compact alternating direction implicit method for the generalized sine-Gordon equation. J. Comput. Appl. Math. 235, 837–849 (2010)

    Article  MathSciNet  Google Scholar 

  21. Hou, B., Liang, D.: The energy-preserving time high-order AVF compact finite difference scheme for nonlinear wave equations in two dimensions. Appl. Numer. Math. 170, 298–320 (2021)

    Article  MathSciNet  Google Scholar 

  22. Li, L., Sun, H., Tam, S.: A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations. Comput. Phys. Commun. 187, 38–48 (2015)

    Article  MathSciNet  Google Scholar 

  23. Darani, M.A.: The RBF partition of unity method for solving the Klein–Gordon equation. Eng. Comput. 38, 679–691 (2022)

    Article  Google Scholar 

  24. Argyris, J., Haase, M., Heinrich, J.C.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  25. Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219, 9447–9460 (2013)

    MathSciNet  Google Scholar 

  26. Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein–Gordon equations. Wave Mot. 38, 1–10 (2003)

    Article  MathSciNet  Google Scholar 

  27. Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)

    Article  MathSciNet  Google Scholar 

  28. Deng, D.: Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numer. Funct. Anal. Optim. 40(9), 1053–1079 (2019)

    Article  MathSciNet  Google Scholar 

  29. Deng, D., Liang, D.: The energy-preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. Appl. Numer. Math. 151, 172–198 (2020)

    Article  MathSciNet  Google Scholar 

  30. Deng, D., Wu, Q.: The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations. Numer. Algorithms. 88, 1875–1914 (2021)

    Article  MathSciNet  Google Scholar 

  31. Nawaz, Y., Arif, M.S., Shatanawi, W., Nazeer, A.: An explicit fourth-order compact numerical scheme for heat transfer of boundary layer flow. Energies 14(12), 3396 (2021)

    Article  Google Scholar 

  32. Bourchtein, A., Bourchtein, L.: Explicit finite difference schemes with extended stability for advection equations. J. Comput. Appl. Math. 236(15), 3591–3604 (2012)

    Article  MathSciNet  Google Scholar 

  33. Li, K., Liao, W.: An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media. J. Comput. Sci. 40, 101063 (2020)

    Article  MathSciNet  Google Scholar 

  34. Balam, R.I., Zapata, M.U.: A new eighth-order implicit finite difference method to solve the three-dimensional Helmholtz equation. Comput. Math. Appl. 80(5), 1176–1200 (2020)

    Article  MathSciNet  Google Scholar 

  35. Wang, Z., Ge, Y., Sun, H., Sun, T.: Sixth-order quasi-compact difference schemes for 2D and 3D Helmholtz equations. Appl. Math. Comput. 431, 127347 (2022)

    MathSciNet  Google Scholar 

  36. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  37. Yang, D.: Iterative Solution for Large Linear System. Academic Press, New York (1991)

    Google Scholar 

  38. Deng, D., Wu, Q.: Error estimations of the fourth-order explicit Richardson extrapolation method for two-dimensional nonlinear coupled wave equations. Comput. Appl. Math. (2022). https://doi.org/10.1007/s40314-021-01701-5

    Article  MathSciNet  Google Scholar 

  39. Zhang, G.: Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation. Appl. Math. Comput. 401, 126055 (2021)

    MathSciNet  Google Scholar 

  40. Achouri, T., Kadri, T., Omrani, K.: Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. Comput. Math. Appl. 82, 74–96 (2021)

    Article  MathSciNet  Google Scholar 

  41. Wu, M., Jiang, Y., Ge, Y.: An accurate and efficient local one-dimensional method for the 3D acoustic wave equation. Demonstr. Math. 55, 528–552 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the editors and the referees whose constructive comments and suggestions are helpful to improve the quality of this paper. This work is partially supported by National Natural Science Foundation of China (12161067, 11772165, 11961054, 11902170), Natural Science Foundation of Ningxia (2022AAC02023, 2020AAC03059), the Key Research and Development Program of Ningxia (2018BEE03007), National Youth Top-notch Talent Support Program of Ningxia and the First Class Discipline Construction Project in Ningxia Universities: Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Ge.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Taking the Taylor series expansion yields

$$\begin{aligned} {u_{i \pm 1}}&= {u_i} \pm h{\left( {\frac{{\partial u}}{{\partial x}}} \right) _i} + \frac{{{h^2}}}{2}{\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} \pm \frac{{{h^3}}}{6} {\left( {\frac{{{\partial ^3}u}}{{\partial {x^3}}}} \right) _i} \nonumber \\&\quad + \frac{{{h^4}}}{{24}}{\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i} \pm \frac{{{h^5}}}{{120}}{\left( {\frac{{{\partial ^5}u}}{{\partial {x^5}}}} \right) _i} \nonumber \\&\quad + \frac{{{h^6}}}{{720}}{\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} \pm \frac{{{h^7}}}{{5040}} {\left( {\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) _i} + O\left( {{h^8}} \right) \end{aligned}$$
(A.1)
$$\begin{aligned} {u_{i \pm 2}} =&{u_i} \pm 2h{\left( {\frac{{\partial u}}{{\partial x}}} \right) _i} + 2{h^2} {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} \pm \frac{{8{h^3}}}{6} {\left( {\frac{{{\partial ^3}u}}{{\partial {x^3}}}} \right) _i} \nonumber \\&\quad + \frac{{16{h^4}}}{{24}} {\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i} \pm \frac{{32{h^5}}}{{120}} {\left( {\frac{{{\partial ^5}u}}{{\partial {x^5}}}} \right) _i} \nonumber \\&\quad + \frac{{64{h^6}}}{{720}}{\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} \pm \frac{{128{h^7}}}{{5040}}{\left( {\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) _i} + O\left( {{h^8}} \right) \end{aligned}$$
(A.2)

Adding \({u_{i + 1}}\) and \({u_{i - 1}}\) in (A.1) and \({u_{i + 2}}\) and \({u_{i - 2}}\) in (A.2) gives

$$\begin{aligned} {u_{i\mathrm{{ + }}1}}\mathrm{{ + }}{u_{i - 1}}&= 2{u_i} + {h^2}{\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} + \frac{{{h^4}}}{{12}}{\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i}\nonumber \\&\quad + \frac{{{h^6}}}{{360}}{\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} + O\left( {{h^8}} \right) \end{aligned}$$
(A.3)
$$\begin{aligned} {u_{i\mathrm{{ + 2}}}}\mathrm{{ + }}{u_{i - 2}}&= 2{u_i} + 4{h^2}{\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} + \frac{{16{h^4}}}{{12}}{\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i} \nonumber \\&\quad + \frac{{64{h^6}}}{{360}}{\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} + O\left( {{h^8}} \right) \end{aligned}$$
(A.4)

Put (A.4)–(A.3) \(\times 16\), we obtain

$$\begin{aligned} {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i}&= \frac{1}{{12{h^2}}}\left[ {16\left( {{u_{i\mathrm{{ + }}1}}\mathrm{{ + }}{u_{i - 1}}} \right) - \left( {{u_{i\mathrm{{ + 2}}}}\mathrm{{ + }}{u_{i - 2}}} \right) - 30{u_i}} \right] \nonumber \\&\quad + \frac{{{h^4}}}{{90}}{\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} + O\left( {{h^6}} \right) \end{aligned}$$
(A.5)

In the same way, we can get (A.4)–(A.3) \(\times 64\)

$$\begin{aligned} {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i}&= \frac{1}{{60{h^2}}}\left[ {64\left( {{u_{i\mathrm{{ + }}1}}\mathrm{{ + }}{u_{i - 1}}} \right) - \left( {{u_{i\mathrm{{ + 2}}}}\mathrm{{ + }}{u_{i - 2}}} \right) - 126{u_i}} \right] \nonumber \\&\quad - \frac{{{h^2}}}{{15}}{\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i} + O\left( {{h^6}} \right) \end{aligned}$$
(A.6)

Define the following difference operator:

$$\begin{aligned} {\bar{\delta }} _x^2{u_i} =&\frac{1}{{12{h^2}}}\left[ {16\left( {{u_{i\mathrm{{ + }}1}}\mathrm{{ + }}{u_{i - 1}}} \right) - \left( {{u_{i\mathrm{{ + 2}}}}\mathrm{{ + }}{u_{i - 2}}} \right) - 30{u_i}} \right] \end{aligned}$$
(A.7)
$$\begin{aligned} {\tilde{\delta }} _x^2{u_i} =&\frac{1}{{60{h^2}}}\left[ {64\left( {{u_{i\mathrm{{ + }}1}}\mathrm{{ + }}{u_{i - 1}}} \right) - \left( {{u_{i\mathrm{{ + 2}}}}\mathrm{{ + }}{u_{i - 2}}} \right) - 126{u_i}} \right] \end{aligned}$$
(A.8)

(A.5) and (A.6) can be rewritten as:

$$\begin{aligned} {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} =&{\bar{\delta }} _x^2{u_i} + \frac{{{h^4}}}{{90}} {\left( {\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) _i} + O\left( {{h^6}} \right) \end{aligned}$$
(A.9)
$$\begin{aligned} {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} =&{\tilde{\delta }} _x^2{u_i} - \frac{{{h^2}}}{{15}}{\left( {\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) _i} + O\left( {{h^6}} \right) \end{aligned}$$
(A.10)

Substituting (A.9) into (A.10), we have

$$\begin{aligned} \left( {1 + \frac{{{h^2}}}{{15}}{\bar{\delta }} _x^2} \right) {\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) _i} = {\tilde{\delta }} _x^2{u_i} + O\left( {{h^6}} \right) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ge, Y. Efficient sixth-order finite difference method for the two-dimensional nonlinear wave equation with variable coefficient. Math Sci 18, 257–273 (2024). https://doi.org/10.1007/s40096-022-00498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00498-6

Keywords

Navigation