Log in

Synthesis and Characterization of Mg and Ti Co-Doped Bismuth Ferrite for Piezoelectric Application

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Lead is the most widely used element in popularly available piezoelectric and ferro-electric materials. As this Lead shows extreme acidic nature in systems, it is not eco-friendly. Therefore, in the present work attempts have been done to synthesize the lead free eco-friendly piezoelectric material. In this present work the Mg, Ti co-doped BiFeO3 (BFTM), [Bi (Fe1−xTix/2Mgx/2)O3, where x = 0,0.1, 0.71, 0.75 and 0.79] was synthesized where BiFeO3 was modified BiFeO3 by solid state method using micron and nano size oxide powders (Bi2O3, Fe2O3, MgO, TiO2). The BFTM powder was prepared by solid solution route using pot milling and co-precipitation method. Effect of excess Bi2O3 addition was studied on phase formation, microstructure, densification and electrical properties using XRD, FESEM, DSC, TG, Dissipation factor and Relative permittivity respectively. It was also observed that increase in calcination temperature produces more amounts of impurity phases. In this case upto 88.6% of theoretical density can be accomplished by conventional sintering and also observed that with the increasing calcination temperature the proportion of impurity phases (like Bi25FeO40 and Bi5FeTi3O15) are increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94(10), 3153–3170 (2011)

    Article  CAS  Google Scholar 

  2. T.P. Comyn, T. Stevenson, A.J. Bel, Piezoelectric properties of BiFeO3–PbTiO3. J. Phys. IV France 128, 13–17 (2005)

    Article  CAS  Google Scholar 

  3. M. Mahesh Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764 (2000)

    Article  ADS  Google Scholar 

  4. P.W. Lu, W.M. Zhang, W.R. Xue, X.F. Wang, In: Proceedings of 9th IEEE International Symposium on Applications of Ferroelectrics, vol. 134, pp. 134–137 (1994)

  5. D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opinion Solid State Mater. Sci. 3, 469–473 (1998)

    Article  ADS  CAS  Google Scholar 

  6. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd Ed., Wiley (2003)

  7. M.S. Bernardo, T. Jardiel, Intrinsic Compositional Inhomogeneities in Bulk Ti-Doped BiFeO3: Microstructure Development and Multiferroic Properties, Chemistry of materials, ACS Publication (2013).

  8. L. Chen, W. Ren, Improved dielectric and ferroelectric properties in Ti-doped BiFeO3–PbTiO3 thin films prepared by pulsed laser deposition. Thin Solid Films 518, 1637–1640 (2010)

    Article  ADS  CAS  Google Scholar 

  9. **ng-Ye Tong , Zong-Zheng Du , Yu-Ting Yang , Ming-Wei Song , Low driving field-induced large strain in MnO2-modified 0.76Bi1/2Na1/2TiO3–0.24SrTiO3 lead-free piezoceramics. Eur. Ceram. Soc. 37, 1379–1386 (2017).

  10. X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, D. Zhang, Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3−NaTaO3 Relaxor ferroelectrics. ACS Appl. Mater. Interfaces 11, 43107–43115 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. M. Kim, P. Sapkota, G.P. Khanal, S. Kim, I. Fujii, S. Ueno, T. Takei, T.S. Suzuki, T. Uchikoshi, Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi0.5Na0.5)TiO3:0.15BaTiO3 green ceramics by electrophoretic deposition. J. Ceram. Soc. Jpn. 126, 542–546 (2018)

    Article  CAS  Google Scholar 

  12. J. Yang, F. Zhang, Q. Yang, Z. Liu, Y. Li, Y. Liu, Q. Zhang, Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 108, 182904 (2016)

    Article  ADS  Google Scholar 

  13. T. Matsuoka, H. Kozuka, K. Kitamura, H. Yamada, T. Kurahashi, M. Yamazaki, K. Ohbayashi, KNN–NTK composite lead-free piezoelectric ceramic. J. Appl. Phys. 116, 154104 (2014)

    Article  ADS  Google Scholar 

  14. J. Yin, C. Li, B. Wu, Z. Li, J. Wu, Defect-induced superior piezoelectric response in perovskite KNbO3. J. Eur. Ceram. Soc. 41, 2506–2513 (2021)

    Article  CAS  Google Scholar 

  15. H.S. Mallik, I. Fujii, Y. Matsui, G.P. Khanal, S. Kim, S. Ueno, T.S. Suzuki, S.J. Wada, Preparation and investigation of hexagonal-tetragonal BaTiO3 powders. Ceram. Soc. Jpn. 129, 91–96 (2021)

    Article  CAS  Google Scholar 

  16. P. Sapkota, I. Fujii, S. Kim, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, Mn–Nb co-do** in barium titanate ceramics by different solid-state reaction routes for temperature stable and DC-bias free dielectrics. Ceram. Int. 48, 2154–2160 (2022)

    Article  CAS  Google Scholar 

  17. R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 79, 2211–2855 (2021). https://doi.org/10.1016/j.nanoen.2020.105412

    Article  CAS  Google Scholar 

  18. F. Kang, L. Zhang, B. Huang, P. Mao, Z. Wang, Q. Sun, J. Wang, D. Hu, Enhanced electromechanical properties of SrTiO3–BiFeO3–BaTiO3 ceramics via relaxor behavior and phase boundary design. J. Eur. Ceram. Soc. 40, 1198–1204 (2020)

    Article  CAS  Google Scholar 

  19. M.H. Lee, J.S. Park, D.J. Kim, R.C. Kambale, M.H. Kim, T.K. Song, H.J. Jung, S.W. Kim, H.I. Choi, W. Kim, Ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 solid solution ceramics. J. Ferroelectrics. 452, 7–12 (2013)

    Article  ADS  CAS  Google Scholar 

  20. G.P. Khanal, I. Fujii, S. Kim, S. Ueno, S. Wada, Fabrication of (Bi0.5K0.5)TiO3 modified BaTiO3–Bi(Mg0.5Ti0.5)O3–BiFeO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 41, 4108–4115 (2021)

    Article  CAS  Google Scholar 

  21. V. Verma, A. Beniwal, A. Ohlan, R. Tripathi, Structural, magnetic and ferroelectric properties of Pr doped multiferroics bismuth ferrites. J Magn Mater 394, 385–390 (2015)

    Article  ADS  CAS  Google Scholar 

  22. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    Article  ADS  CAS  Google Scholar 

  23. A. Manzoor, A.M. Afzal, Investigation of dielectric and optical properties of structurally modified bismuth ferrite nanomaterials. Ceram. Int. 42(9), 11447–11452 (2016)

    Article  CAS  Google Scholar 

  24. J. Peng, M. Hojamberdiev, H. Li, D. Mao, Electrical, magnetic, and direct and converse magnetoelectric properties of (1–x)Pb(Zr0.52Ti0.48)O3−(x)CoFe2O4 (PZT–CFO) magnetoelectric composites. J. Magn. Mater. 378, 298–305 (2015)

    Article  ADS  CAS  Google Scholar 

  25. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Structural, dielectric and impedance properties of Ca(Fe2/3W1/3)O3 nanoceramics. Physica B 393(1–2), 24–31 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants related to the work were received during the preparation of this manuscript. Although student scholarship throughout the process was provided by MHRD.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Pratim Das], [Ranit Karmakar]. The first draft of the manuscript was written by [Pratim Das] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pratim Das.

Ethics declarations

Competing interests

Pratim Das and Ranit Karmakar have declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Karmakar, R. Synthesis and Characterization of Mg and Ti Co-Doped Bismuth Ferrite for Piezoelectric Application. J. Inst. Eng. India Ser. C 105, 179–186 (2024). https://doi.org/10.1007/s40032-023-01020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-01020-0

Keywords

Navigation