Log in

Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Comments to this article was published on 06 May 2022

Abstract

Recently, scientists and researcher are focussing on multiferroic materials which are widely used in various multifunctional devices. In this communication, synthesis and characterisation of nickel and titanium modified bismuth ferrite have been reported. A lead-free multiferroic compound, Bi(Ni0.40Ti0.40Fe0.20)O3, has been synthesized using solvent-free solid-state reaction route at 1073 K in an air atmosphere. The formation of a single-phase with orthorhombic symmetry and the substitution/concentration of Ni/Ti at the Fe-site of BiFeO3 were confirmed by X-ray diffraction and energy dispersive X-ray microanalysis spectroscopy techniques respectively. Based on X-ray reflection profiles, the average particle size was estimated to be around 30 nm. Study of surface morphology of the compound by field emission scanning electron microscope has shown nearly uniform distribution of grains of different dimension with some voids. The density (measured by Archimedes method) of as-synthesized pellets was found to be nearly 92.8% of the theoretical density. A significant effect of substitution of multiple elements at the Fe site on dielectric constant and tangent loss of BiFeO3 has been observed. Detailed analysis of dielectric and impedance data, collected in a wide range of frequency (1–1000 kHz) and temperature (298–773 K), has provided many important results on structure-properties relationship and dielectric relaxation of modified bismuth ferrite. Magnetic field dependent magnetisation, measured by vibrating sample magnetometer (VSM at room temperature), shows a significant enhancement in the value of remnant magnetization of Ni/Ti modified bismuth ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Gajek, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert et al., Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)

    Article  Google Scholar 

  2. M. Bibes, A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  Google Scholar 

  3. J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Article  Google Scholar 

  4. G. Anjum, S. mullah, D.K. Shukla, R. Kumar, Magneto-electric coupling in multiferroic La0.8Bi0.2FeO3 ceramic. Mater. Lett. 64, 2003–2005 (2010)

    Article  Google Scholar 

  5. N. Van Minh, N. Gia Quan, Structural, optical and electromagnetic properties of Bi1–xHoxFeO3 multiferroic materials. J. Alloy. Compd. 509, 2663–2666 (2011)

    Article  Google Scholar 

  6. L. Bin, C. Wang, W. Liu, M. Ye, N. Wang, Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol-gel electrospinning technique. Mater. Lett. 90, 45–48 (2013)

    Article  Google Scholar 

  7. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–764 (2006)

    Article  Google Scholar 

  8. S.J. Clark, J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 90, 132903 (2007)

    Article  Google Scholar 

  9. V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)

    Article  Google Scholar 

  10. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  11. Y.M. Chiang, D.P. Birnie III, W.D. Kingery, in Physical Ceramics: Principles for Ceramic Science & Engineering, 2nd ed. (Wiley, New York, 1997)

    Google Scholar 

  12. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site do** of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)

    Article  Google Scholar 

  13. Y. Wang, C.-W. Nana, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89, 052903 (2006)

    Article  Google Scholar 

  14. Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517, 4497–4501 (2009)

    Article  Google Scholar 

  15. A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics. J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)

    Article  Google Scholar 

  16. A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)

    Article  Google Scholar 

  17. N. Kumar, A. Shukla, R.N.P. Choudhary, C. Behera, Structural and dielectric studies of Bi(Ni0.45Ti0.45Fe0.10)O3 ceramics. AIP Conf. Proc., 1731(1), 030008 (2016). doi:10.1063/1.4947613

    Article  Google Scholar 

  18. N. Kumar, A. Shukla, R.N.P Choudhary, C. Behera, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J. Alloy. Compd. 688, 858–869 (2016)

    Article  Google Scholar 

  19. B. Park, An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042

  20. B.D. Cullity, in Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, USA, 1978)

    Google Scholar 

  21. P. Pandit, S. Satapathy, P.K Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1–xLaxFeO3 ceramics: an impedance spectroscopy analysis. Physica B 406, 2669–2677 (2011)

    Article  Google Scholar 

  22. E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108/1–14 (2011)

    Article  Google Scholar 

  23. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  24. S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)

    Article  Google Scholar 

  25. D. Maurya, H. Thota, A. Garg, B. Pandey, H.C. Verma, Magnetic studies of multiferroic Bi1–xSmxFeO3 ceramics synthesized by mechanical activation assisted processes. J. Phys. Cond. Matter 21, 026007 (2009)

    Article  Google Scholar 

  26. J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy Theory, Experiments and Applications (Wiley, Hoboken, 2005)

    Google Scholar 

  27. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3,ceramics. Mater. Chem. Phys. 87(2), 256–263 (2004)

    Article  Google Scholar 

  28. S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLi-Mo2O8 electroceramics. Physica B 355, 188–201 (2005)

    Article  Google Scholar 

  29. A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Ei Marssi, I. Luk’yanchuk, Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B 85(6), 1–9 (2012)

    Article  Google Scholar 

  30. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  31. C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369–375 (2006)

    Article  Google Scholar 

  32. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Electrical and pyroelectric properties of lanthanum based niobate. J. Phys. Chem. Solids 74(2), 377–385 (2013)

    Article  Google Scholar 

  33. M. Hodge, M.D. Ingram, A.R. West, A new method for analyzing the ac- behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)

    Article  Google Scholar 

  34. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)

    Article  Google Scholar 

  35. J. Liu, Ch.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119(5), 2812–2819 (2003)

    Article  Google Scholar 

  36. N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996)

    Article  Google Scholar 

  37. R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13(2), 147–149 (1984)

    Article  Google Scholar 

  38. J.S. Kim, Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001)

    Article  Google Scholar 

  39. S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)

    Article  Google Scholar 

  40. B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloy. Compd. 579, 218–226 (2013)

    Article  Google Scholar 

  41. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  42. C. Karthik, K.B.R. Varma, Dielectric and AC Conductivity behaviour of BaBi2Nb2O9 ceramics. J. Phys. Chem. Solids 67(12), 2437–2441 (2006)

    Article  Google Scholar 

  43. E. Venkata Ramana, M.P.F. Graca, M.A. Valente, T. Bhima Sankaram, Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications. J. Alloy. Compd. 583, 198–205 (2014)

    Article  Google Scholar 

  44. J. Wang, J.B. Neaton, H. Zheng et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  45. S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)

    Article  Google Scholar 

  46. D. Maurya, H. Thota, K.S. Nalwa, A. Garg, BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: a comparative study. J. Alloy. Compd. 4, 477–780 (2009)

    Google Scholar 

  47. G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)

    Article  Google Scholar 

  48. H.O. Rodrigues, G.F.M.P. Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids 71, 1329–1336 (2010)

    Article  Google Scholar 

  49. P. Guzdek, The magnetostrictive and magnetoelectric characterization of Ni0.3Zn0.62Cu0.08Fe2O4–Pb(FeNb)0.5O3 laminated composite. J. Magn. Magn. Mater. 349, 219–223 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology Guwahati for providing some characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shukla, A. & Choudhary, R.N.P. Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J Mater Sci: Mater Electron 28, 6673–6684 (2017). https://doi.org/10.1007/s10854-017-6359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6359-y

Keywords

Navigation