Log in

Head space single-drop microextraction of pyridine from nargile smoke and determination by high-performance liquid chromatography

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study aimed to apply the headspace single-drop microextraction (HS-SDME) method for extracting and determining pyridine in nargile smoke samples, followed by high-performance liquid chromatography (HPLC). We optimised the different parameters to evaluate the HS-SDME process. The optimum conditions were 2.5 µL of toluene as the extracting solvent, 150 s as the optimal extraction time, ionic strength of 15% NaCl and stirring of the solution at 700 rpm. Under the optimal conditions, the HS-SDME–HPLC technique has a linear range for pyridine between 0.05 and 30.0 µg L−1, with a minimum limit of detection (LOD) of approximately 0.028 µg L−1. Statistical data showed good accuracy and precision. The proposed method can be used for microextraction and analyses of ultra-trace amounts of pyridine in nargile smoke samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DI:

Direct immersion

HS:

Headspace

LPME:

Liquid-phase microextraction

SDME:

Single-drop microextraction

UV:

Ultraviolet

References

  1. L. Arjomandi-Behzad, Y. Yamini, M. Rezazadeh, Extraction of pyridine derivatives from human urine using electromembrane extraction coupled to dispersive liquid–liquid microextraction followed by gas chromatography determination. Talanta 126, 73–81 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. E.L. White, M.S. Uhrig, T.J. Johnson, B.M. Gordon, R.D. Hicks, M.F. Borgerding, W.M. Coleman III., J.F. Elder Jr., Quantitative determination of selected compounds in a Kentucky 1R4F reference cigarette smoke by multidimensional gas chromatography and selected ion monitoring-mass spectrometry. J. Chromatogr. Sci. 28, 393–399 (1990)

    Article  CAS  PubMed  Google Scholar 

  3. H. Tang, G. Richards, K. Gunther, J. Crawford, M. Lee, E. Lewis, D. Eatough, Determination of gas phase nicotine and 3-ethenylpyridine, and particulate phase nicotine in environmental tobacco smoke with a collection bed–capillary gas chromatography system. J. High Resolut. Chromatogr. 11, 775–782 (1988)

    Article  CAS  Google Scholar 

  4. C. Almeida, J. Fernandes, S. Cunha, A novel dispersive liquid–liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC–MS) method for the determination of eighteen biogenic amines in beer. Food Control 25, 380–388 (2012)

    Article  CAS  Google Scholar 

  5. A. Esrafili, Y. Yamini, M. Ghambarian, B. Ebrahimpour, Automated preconcentration and analysis of organic compounds by on-line hollow fiber liquid-phase microextraction–high performance liquid chromatography. J. Chromatogr. A 1262, 27–33 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. D.M. Souza, J.F. Reichert, A.F. Martins, A simultaneous determination of anti-cancer drugs in hospital effluent by DLLME HPLC-FLD, together with a risk assessment. Chemosphere 201, 178–188 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M. Maham, V. Kiarostami, S. Waqif-Husain, P. Abroomand-Azar, M.S. Tehrani, M.K. Sharifabadi, H. Afrouzi, M. Shapouri, R. Karami-Osboo, Extraction and determination of cyproheptadine in human urine by DLLME-HPLC method. Iran. J. Pharm. Res. IJPR. 12, 311 (2013)

    CAS  PubMed  Google Scholar 

  8. M.A. Farajzadeh, L. Goushjuii, Y. Bashour, A simple and rapid dispersive liquid-liquid microextraction method followed by GC-FID for determination of N-methylpyrrolidine in cefepime. J. Sep. Sci. 33, 3767–3773 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. C.P. Diao, C.H. Wei, C.H. Feng, Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID. Chromatographia 75, 551–555 (2012)

    Article  CAS  Google Scholar 

  10. G. Song, C. Zhu, Y. Hu, J. Chen, H. Cheng, Determination of organic pollutants in coking wastewater by dispersive liquid–liquid microextraction/GC/MS. J. Sep. Sci. 36, 1644–1651 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. L.B. Agudelo Mesa, J.M. Padro, M. Reta, Analysis of non-polar heterocyclic aromatic amines in beefburguers by using microwave-assisted extraction and dispersive liquid-ionic liquid microextraction. Food Chem. 141, 1694–1701 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. S. Pirsa, N. Alizadeh, Rapid determination of pyridine derivatives by dispersive liquid-liquid microextraction coupled with gas chromatography/gas sensor based on nanostructured conducting polypyrrole. Talanta 87, 249–254 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J. Mol. Liq. 259, 319–339 (2018)

    Article  CAS  Google Scholar 

  14. M.R. Payán, M.Á.B. López, R. Fernández-Torres, J.L.P. Bernal, M.C. Mochón, HPLC determination of ibuprofen, diclofenac and salicylic acid using hollow fiber-based liquid phase microextraction (HF-LPME). Anal. Chim. Acta 653, 184–190 (2009)

    Article  Google Scholar 

  15. M.R. Payán, M.Á.B. López, R. Fernández-Torres, M.C. Mochón, J.L.G. Ariza, Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta 82, 854–858 (2010)

    Article  Google Scholar 

  16. S. Tang, T. Qi, P.D. Ansah, J.C.N. Fouemina, W. Shen, C. Basheer, H.K. Lee, Single-drop microextraction. TrAC, Trends Anal. Chem. 108, 306–313 (2018)

    Article  CAS  Google Scholar 

  17. M.A. Jeannot, F.F. Cantwell, Solvent microextraction into a single drop. Anal. Chem. 68, 2236–2240 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. M. Zhang, J. Huang, C. Wei, B. Yu, X. Yang, X. Chen, Mixed liquids for single-drop microextraction of organochlorine pesticides in vegetables. Talanta 74, 599–604 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. A.L. Theis, A.J. Waldack, S.M. Hansen, M.A. Jeannot, Headspace solvent microextraction. Anal. Chem. 73, 5651–5654 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. G. Li, K.H. Row, Single-drop microextraction technique for the determination of antibiotics in environmental water. J. Sep. Sci. 45, 883–895 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. S.-H. Sun, J.-P. **e, F.-W. **e, Y.-L. Zong, Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry. J. Chromatogr. A 1179, 89–95 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Sha, J. Meng, H. Lin, C. Deng, B. Liu, Development of single-drop microextraction and simultaneous derivatization followed by GC-MS for the determination of aliphatic amines in tobacco. J. Sep. Sci. 33, 1283–1287 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. T. Jumepaeng, D.L. Luthria, S. Chanthai, The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography. Anal. Methods 4, 421–428 (2012)

    Article  CAS  Google Scholar 

  24. Tegladza, I. D., Qi, T., Chen, T., Alorku, K., Tang, S., Shen, W., Kong, D., Yuan, A., Liu, J., Lee, H. K., Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review. J. Hazard. Mater. 122403 (2020)

  25. Zhao, J., **, X., Yang, C., Quinto, M., Shang, H., Li, D., Gas Purge Micro Solvent Extraction: A rapid and powerful tool for essential oil chromatographic fingerprints. J. Pharm. Biomed. Anal. 113339 (2020)

  26. Qi, T., Xu, M., Yao, Y., Chen, W., Xu, M., Tang, S., Shen, W., Kong, D., Cai, X., Shi, H., Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta. 220 (2020)

  27. M.A. Jeannot, A. Przyjazny, J.M. Kokosa, Single drop microextraction—development, applications and future trends. J. Chromatogr. A 1217, 2326–2336 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. A.A. Rincón, V. Pino, J.H. Ayala, A.M. Afonso, Headspace-single drop microextraction (HS-SDME) in combination with high-performance liquid chromatography (HPLC) to evaluate the content of alkyl-and methoxy-phenolic compounds in biomass smoke. Talanta 85, 1265–1273 (2011)

    Article  PubMed  Google Scholar 

  29. J. López-Darias, M. Germán-Hernández, V. Pino, A.M. Afonso, Dispersive liquid–liquid microextraction versus single-drop microextraction for the determination of several endocrine-disrupting phenols from seawaters. Talanta 80, 1611–1618 (2010)

    Article  PubMed  Google Scholar 

  30. A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian, Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 1216, 6673–6679 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. C.-L. Ye, Q.-X. Zhou, X.-M. Wang, Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples. Anal. Chim. Acta 572, 165–171 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. A. Przyjazny, J.M. Kokosa, Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction. J. Chromatogr. A 977, 143–153 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. A. Penalver, E. Pocurull, F. Borrull, R. Marce, Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. J. Chromatogr. A 953, 79–87 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. P.M. Nowak, R. Wietecha-Posłuszny, J. Pawliszyn, White Analytical Chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC, Trends Anal. Chem. 138, 116223 (2021)

    Article  CAS  Google Scholar 

  35. P. Shahdousti, M. Aghamohammadi, S. Seidi, B. Harooni, H. Kalhor, Monitoring of pyridine, 3-picoline and quinoline in smokers’ urine using ultrasound-assisted emulsification microextraction coupled with high-performance liquid chromatography. J. Iran. Chem. Soc. 12, 1757–1763 (2015)

    Article  CAS  Google Scholar 

  36. Y. Yamini, S. Seidi, A. Pourali, M. Rezazadeh, Electrical field-stimulated liquid-phase microextraction for trace analysis of pyridine and its derivatives in cigarette extract. J. Iran. Chem. Soc. 12, 503–511 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousif Taha Maaroof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maaroof, Y.T., Mahmoud, K.M. Head space single-drop microextraction of pyridine from nargile smoke and determination by high-performance liquid chromatography. J IRAN CHEM SOC 21, 421–428 (2024). https://doi.org/10.1007/s13738-023-02935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02935-2

Keywords

Navigation