Log in

Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

To estimate the surface tension of liquid hydrocarbon mixtures as an essential thermophysical property, artificial neural networks (AANs) are used. To develop the AAN model, 25 binary mixtures containing 560 data points in a wide range of temperatures (287.81–343.15 K) and at atmospheric pressure were considered. The performances of two neural networks including feed-forward (FFNN) and cascade neural network (CNN) are compared with different input variables. For both cases, the Levenberg–Marquardt optimization method is used to optimize the weights and biases of the proposed structures with tansig and pureline transfer functions in the hidden and output layers, respectively. It was found that the CNN with the structure of 5-9-1 and input variables of temperature (T), mole fraction (x), molecular weights of both compounds (MW), and mixture critical temperature (Tc-mix) is the optimum model with the average absolute relative deviation (AARD%) = 1.33 and correlation coefficient (R2) = 0.992. The most important feature of the proposed model is its ability to differentiate between isomers and correctly predict their binary surface tensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MW:

Molecular weight: gr/mol

\(P\mathrm{c}\) :

Critical pressure bar

P C-mix :

Critical pressure of mixture bar

T :

Temperature K

\(T\mathrm{c}\) :

Critical temperature K

T C-mix :

Critical temperature of mixture K

T r :

Reduced temperature

T nbr :

Reduced normal boiling point

\(V\mathrm{c}\) :

Critical volume cm3/mol

V C-mix :

Critical volume of mixture cm3/mol

Z C :

Critical compressibility factor

Z C-mix :

Critical compressibility factor of mixture

s :

Specific gravity gr/cm3

x :

Mole fraction

µr :

Reduced dipole moment

ω :

Acentric factor

ω mix :

Acentric factor of mixture

AAN:

Artificial neural network

AARD:

Average absolute relative deviation

CNN:

Cascade neural network

F:

Transfer function

FFNN:

Feed-forward neural network

\({I}_{\mathrm{mix}}\) :

Properties of mixtures

MLP:

Multilayer perceptron

R 2 :

Correlation coefficient

W :

Weight

X :

Input variable

b :

Bias

\({n}_{j}\) :

Predicted property

References

  1. G. Pazuki, M. Nikookar, L. Sahranavard, Petroleum Sci. Technol. 29, 2384 (2011)

    Article  CAS  Google Scholar 

  2. A. Roosta, B. Sadeghi, Chem. Eng. Commun. 203, 1349 (2016)

    Article  CAS  Google Scholar 

  3. B. Carey, L. Scriven, H. Davis, AIChE J. 24, 1076 (1978)

    Article  CAS  Google Scholar 

  4. C. Miqueu, B. Mendiboure, A. Graciaa, J. Lachaise, Fluid Phase Equilib. 207, 225 (2003)

    Article  CAS  Google Scholar 

  5. A. Mulero, I. Cachadiña, D. Bautista, J. Phys. Chem. Ref. Data 50, 023104 (2021)

    Article  CAS  Google Scholar 

  6. A. Mulero, I. Cachadiña, L. Cardona, J. Valderrama, Industr. Eng. Chem. Res. 61, 3457 (2022)

    Article  CAS  Google Scholar 

  7. Y.-X. Zuo, E.H. Stenby, Fluid Phase Equilib. 132, 139 (1997)

    Article  CAS  Google Scholar 

  8. A. Jouyban, W.E. Acree Jr., J. Mol. Liq. 323, 115054 (2021)

    Article  CAS  Google Scholar 

  9. L. Chunxi, W. Wenchuan, W. Zihao, Fluid Phase Equilib. 175, 185 (2000)

    Article  CAS  Google Scholar 

  10. M.S.C. Santos, J.C.R. Reis, Fluid Phase Equilib. 423, 172 (2016)

    Article  CAS  Google Scholar 

  11. E.S. Bezerra, J.M. Santos, M.L. Paredes, Fluid Phase Equilib. 288, 55 (2010)

    Article  CAS  Google Scholar 

  12. I. Egry, Int. J. Thermophys. 26, 931 (2005)

    Article  CAS  Google Scholar 

  13. A. Jouyban, A. Fathi-Azarbayjani, W.E. Acree, Chem. Pharmaceutical Bull. 52, 1219 (2004)

    Article  CAS  Google Scholar 

  14. G.M. Wilson, J. Am. Chem. Soc. 86, 127 (1964)

    Article  CAS  Google Scholar 

  15. A. Rafati, A. Bagheri, M. Najafi, J. Chem. Thermodyn. 43, 248 (2011)

    Article  CAS  Google Scholar 

  16. A. Rafati, A. Bagheri, A. Khanchi, E. Ghasemian, M. Najafi, J. Colloid Interface Sci. 355, 252 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. E.G. Lemraski, J. Mol. Liq. 203, 52 (2015)

    Article  CAS  Google Scholar 

  18. V. Vinš, B. Planková, J. Hrubý, Int. J. Thermophys. 34, 792 (2013)

    Article  Google Scholar 

  19. J.M. Garrido, A. Mejía, M.M. Pineiro, F.J. Blas, E.A. Müller, AIChE J. 62, 1781 (2016)

    Article  CAS  Google Scholar 

  20. E.A. Müller, A. Mejía, Fluid Phase Equilib. 282, 68 (2009)

    Article  Google Scholar 

  21. L.I. Rolo, A.I. Caço, A.J. Queimada, I.M. Marrucho, J.A. Coutinho, J. Chem. Eng. Data 47, 1442 (2002)

    Article  CAS  Google Scholar 

  22. H. Lin, Y.-Y. Duan, Q. Min, Fluid Phase Equilib. 254, 75 (2007)

    Article  CAS  Google Scholar 

  23. H. Lin, Y. Duan, J. Zhang, Int. J. Thermophys. 29, 423 (2008)

    Article  CAS  Google Scholar 

  24. G. Di Nicola, M. Pierantozzi, Int. J. Refrig 36, 562 (2013)

    Article  Google Scholar 

  25. D.M. Himmelblau, Korean J. Chem. Eng. 17, 373 (2000)

    Article  CAS  Google Scholar 

  26. D.M. Himmelblau, Ind. Eng. Chem. Res. 47, 5782 (2008)

    Article  CAS  Google Scholar 

  27. S. Curteanu, H. Cartwright, J. Chemom. 25, 527 (2011)

    Article  CAS  Google Scholar 

  28. C.B. Carvalho, E.P. Carvalho, M.A. Ravagnani, Brazilian J. Chem. Eng. 37, 729 (2020)

    Article  Google Scholar 

  29. Á. Mulero, I. Cachadiña, J.O. Valderrama, Fluid Phase Equilib. 451, 60 (2017)

    Article  CAS  Google Scholar 

  30. A. Roosta, P. Setoodeh, A. Jahanmiri, Industr. Eng. Chem. Res. 51, 561 (2012)

    Article  CAS  Google Scholar 

  31. M. Lashkarbolooki, M. Bayat, Chem. Eng. Res. Des. 137, 154 (2018)

    Article  CAS  Google Scholar 

  32. K. Movagharnejad, F. Zareei, B. Mehdizadeh, S. Salahi, M. Lashkenari, Petroleum Sci. Technol. 33, 1008 (2015)

    Article  CAS  Google Scholar 

  33. H. Parhizgar, M.R. Dehghani, A. Khazaei, M. Dalirian, Industr. Eng. Chem. Res. 51, 2775 (2012)

    Article  CAS  Google Scholar 

  34. M. Nabipour, Fluid Phase Equilib. 456, 151 (2018)

    Article  CAS  Google Scholar 

  35. G. Bakeri, M. Delavar, M. Soleimani Lashkenari, J. Oil, Gas Petrochem. Technol. 2, 14 (2015)

    Google Scholar 

  36. H.A. Ojaki, M. Lashkarbolooki, K. Movagharnejad, Colloids Surfaces A: Physicochem. Eng. Aspects 590, 124474 (2020)

    Article  Google Scholar 

  37. M. Lashkarbolooki, Sep. Sci. Technol. 52, 1454 (2017)

    Article  CAS  Google Scholar 

  38. R.L. Schmidt, J.C. Randall, H.L. Clever, J. Phys. Chem. 70, 3912 (1996)

    Article  Google Scholar 

  39. D. Papaioannou, C. Panayiotou, J. Colloid Interface Sci. 130, 432 (1989)

    Article  CAS  Google Scholar 

  40. S. Suri, V. Ramakrishna, J. Phys. Chem. 72, 3073 (1968)

    Article  CAS  Google Scholar 

  41. R. Tahery, J. Chem. Thermodyn. 106, 95 (2017)

    Article  CAS  Google Scholar 

  42. D. Gómez-Díaz, J.C. Mejuto, J.M. Navaza, A. Rodríguez-Álvarez, J. Chem. Eng. Data 47, 872 (2002)

    Article  Google Scholar 

  43. H. Kahl, T. Wadewitz, J. Winkelmann, J. Chem. Eng. Data 48, 1500 (2003)

    Article  CAS  Google Scholar 

  44. Z. Li, B.C.-Y. Lu, Chem. Eng. Sci. 56, 6977 (2001)

    Article  CAS  Google Scholar 

  45. S. Pezhhanfar, M. Zarei, J. Iran. Chem. Soc. 19, 231 (2022)

    Article  CAS  Google Scholar 

  46. K.N. Seneviratne, T.J. Hughes, M.L. Johns, K.N. Marsh, E.F. May, J. Chem. Thermodyn. 111, 173 (2017)

    Article  CAS  Google Scholar 

  47. F. Gozalpour, A. Danesh, A.C. Todd, B. Tohidi, Fluid Phase Equilib. 233, 144 (2005)

    Article  CAS  Google Scholar 

  48. J. Satherley, D.L. Cooper, D.J. Schiffrin, Fluid Phase Equilib. 456, 193 (2018)

    Article  CAS  Google Scholar 

  49. T.M. Koller, T. Klein, C.D. Giraudet, J. Chen, A. Kalantar, G.P. van der Laan, M.H. Rausch, A.P. Fröba, J. Chem. Eng. Data 62, 3319 (2017)

    Article  CAS  Google Scholar 

  50. F.D. Lenahan, M. Zikeli, M.H. Rausch, T. Klein, A.P. Fröba, J. Chem. Eng. Data 66, 2264 (2021)

    Article  CAS  Google Scholar 

  51. C.L. Yaws, C. Gabbula, Yaws" Handbook of thermodynamic and physical properties of chemical compounds (Knovel, 2003)

    Google Scholar 

  52. R.M. Santana, D.C. Napoleão, S.G. dos Santos Júnior, R.K. Gomes, N.F. de Moraes, L.E. Zaidan, D.R.M. Elihimas, G.E. Nascimento, M.M. Duarte, Chem. Papers 75, 2305 (2021)

    Article  CAS  Google Scholar 

  53. E. Davoudi, B. Vaferi, Chem. Eng. Res. Des. 130, 138 (2018)

    Article  CAS  Google Scholar 

  54. B. Vaferi, Y. Rahnama, P. Darvishi, A. Toorani, M. Lashkarbolooki, J. Supercr. Fluids 84, 80 (2013)

    Article  CAS  Google Scholar 

  55. Á. Mulero, M. Pierantozzi, I. Cachadiña, G. Di Nicola, Fluid Phase Equilib. 449, 28 (2017)

    Article  CAS  Google Scholar 

  56. S. Atashrouz, H. Mirshekar, A. Mohaddespour, J. Mol. Liquids 236, 344 (2017)

    Article  CAS  Google Scholar 

  57. S. Jalili, A. Jaberi, M. Mahjani, M. Jafarian, J. Iranian Chem. Soc. 5, 669 (2008)

    Article  CAS  Google Scholar 

  58. M. Lashkarbolooki, A.Z. Hezave, S. Ayatollahi, Fluid Phase Equilib. 324, 102 (2012)

    Article  CAS  Google Scholar 

  59. M.T. Hagan, H.B. Demuth, M. Beale, Neural network design (PWS Publishing Co., 1997)

    Google Scholar 

  60. G. Cybenko, Math. Control Signals Syst. 2, 303 (1989)

    Article  Google Scholar 

  61. K. Levenberg, Q. Appl. Math. 2, 164 (1944)

    Article  Google Scholar 

  62. M.T. Hagan, M.B. Menhaj, IEEE Trans. Neural Networks 5, 989 (1994)

    Article  CAS  PubMed  Google Scholar 

  63. S. Şahin, S. Sevgen, R. Samli, Chem. Papers 73, 1189 (2019)

    Article  Google Scholar 

  64. M. Niknam Shahrak, M. Esfandyari, M. Karimi, J. Iranian Chem. Soc. 16, 11 (2019)

    Article  CAS  Google Scholar 

  65. M. Lashkarbolooki, Z.S. Shafipour, A.Z. Hezave, J. Supercr. Fluids 73, 108 (2013)

    Article  CAS  Google Scholar 

  66. V. Lam, G. Benson, Can. J. Chem. 48, 3773 (1970)

    Article  CAS  Google Scholar 

  67. D. Gómez-Díaz, J.C. Mejuto, J.M. Navaza, J. Chem. Eng. Data 46, 720 (2001)

    Article  Google Scholar 

  68. M. M. N. Seyyed Fatemeh naghibi, (2007).

  69. M. Domínguez-Pérez, E. Rilo, L. Segade, C. Franjo, O. Cabeza, J. Chem. Eng. Data 55, 1317 (2010)

    Article  Google Scholar 

  70. L. Mosteiro, L.M. Casás, J.L. Legido, J. Chem. Thermodyn. 41, 695 (2009)

    Article  CAS  Google Scholar 

  71. H. Kahl, T. Wadewitz, J. Winkelmann, J. Chem. Eng. Data 48, 580 (2003)

    Article  CAS  Google Scholar 

  72. A.E. Andreatta, R.E. Martini, J.L. Legido, L. Casás, Int. J. Eng. Res. Sci. 5, 51 (2016)

    Google Scholar 

  73. Á. Piñeiro, P. Brocos, A. Amigo, J. Gracia-Fadrique, M. Guadalupe Lemus, Langmuir 17, 4261 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Amouei Ojaki.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojaki, H.A., Lashkarbolooki, M. & Movagharnejad, K. Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures. J IRAN CHEM SOC 20, 655–667 (2023). https://doi.org/10.1007/s13738-022-02703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02703-8

Keywords

Navigation