Log in

Numerical scheme for Erdélyi–Kober fractional diffusion equation using Galerkin–Hermite method

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The aim of this work is to devise and analyse an accurate numerical scheme to solve Erdélyi–Kober fractional diffusion equation. This solution can be thought as the marginal pdf of the stochastic process called the generalized grey Brownian motion (ggBm). The ggBm includes some well-known stochastic processes: Brownian motion, fractional Brownian motion, and grey Brownian motion. To obtain a convergent numerical scheme we transform the fractional diffusion equation into its weak form and apply the discretization of the Erdélyi–Kober fractional derivative. We prove the stability of the solution of the semi-discrete problem and its convergence to the exact solution. Due to the singularity in the time term appearing in the main equation, the proposed method converges slower than first order. Finally, we provide a numerical analysis of the full-discrete problem using orthogonal expansion in terms of Hermite functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bender, C., Bormann, M., Butko, Y.A.: Subordination principle and Feynman–Kac formulae for generalized time-fractional evolution equations. ar**v:2202.01655v1 (2022)

  2. Bender, C., Butko, Y.A.: Stochastic solutions of generalized time-fractional evolution equations. Fract. Calc. Appl. Anal. 25(2). https://doi.org/10.1007/s13540-022-00025-3

  3. da Silva, J.L., Erraoui, M.: Generalized grey Brownian motion local time: existence and weak approximation. Stochastics 87, 347–361 (2015)

    MathSciNet  MATH  Google Scholar 

  4. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A.: On fractional integration and its application to the theory of Hankel transforms. Quart. J. Math. 11, 293–303 (1940)

    MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Luchko, Yu., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1–2), 175–191 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Gracia, J.L., O’Riordan, E., Stynes, M.: Convergence in positive time for a finite difference method applied to a fractional convection-diffusion problem. Comput. Methods Appl. Math. 18(1), 33–42 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Grothaus, M., Jahnert, F.: Mittag-Leffler analysis II: Application to the fractional heat equation. J. Funct. Anal. 270, 2732–2768 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Grothaus, M., Jahnert, F., Riemann, F., da Silva, J.L.: Mittag-Leffler analysis I: Construction and characterization. J. Funct. Anal. 268, 1876–1903 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

  12. Ibrahim, R.W., Momani, S.: On the existence and uniqueness of solutions of a class of fractional differential equations. J. Math. Anal. 334(1), 1–10 (2007)

    MathSciNet  MATH  Google Scholar 

  13. **, B.: Fractional Differential Equations: An Approach Via Fractional Derivatives. Springer, Switzerland (2021)

    MATH  Google Scholar 

  14. **, B., Li, B., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006)

  16. Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series 301, Longman, Harlow (1994)

  17. Kiryakova, V.: Generalized fractional calculus operators with special functions. In: Handbook of Fractional Calculus with Applications, Vol. 1, 87–110, De Gryuter Berlin, Germany (2019). https://doi.org/10.1515/9783110571622-004

  18. Kiryakova, V., Al-Saqabi, B.N.: Transmutation method for solving Erdélyi-Kober fractional differintegral equations. J. Math. Anal. 211(1), 347–364 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Kober, H.: On fractional integrals and derivatives. Quart. J. Math. 11, 193–215 (1940)

    MathSciNet  MATH  Google Scholar 

  20. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Li, D., Liao, H.-L., Sun, W., Wang, J., Zhang, J.: Analysis of \( L1 \)-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 88–103 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton, USA (2015)

    MATH  Google Scholar 

  25. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76(2), 848–866 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Linz, P.: Analytical and numerical methods for Volterra equations. SIAM, Philadelphia (1985)

    MATH  Google Scholar 

  27. Lubich, C.: Convolution quadrature revisited. BIT. Numer. Math. 44(3), 503–514 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Luchko, Yu., Trujillo, J.J.: Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10(3), 249–267 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, UK (2010)

    MATH  Google Scholar 

  30. Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differ. Equ. (2010). https://www.hindawi.com/journals/ijde/2010/104505/

  32. Mathai, A.M., Haubold, H.J.: Erdélyi-Kober Fractional Calculus. Inspired by Solar Neutrino Physics. Springer Nature, Singapore, From a Statistical Perspective (2018)

    MATH  Google Scholar 

  33. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Mura, A.: Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Lap Lambert Academic Publishing (2011)

  35. Mura, A., Mainardi, F.: A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integral Transform Spec. Funct. 20(3–4), 185–198 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Mura, A., Pagnini, G.: Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41(28), 285003 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Mura, A., Taqqu, M.S., Mainardi, F.: Non-Markovian diffusion equations and processes: analysis and simulations. Phys. A: Stat. Mech. Appl. 387(21), 5033–5064 (2008)

    MathSciNet  Google Scholar 

  38. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  40. Pagnini, G.: Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15(1), 117–127 (2012). https://doi.org/10.2478/s13540-012-0008-1

    Article  MathSciNet  MATH  Google Scholar 

  41. Płociniczak, Ł.: A linear Galerkin numerical method for a strongly nonlinear subdiffusion equation. ar**v preprint ar**v:2107.10057 (2021)

  42. Płociniczak, Ł.: Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications. Commun. Nonlinear Sci. Numer. Simul. 24(1-3), 169–183 (2015)

  43. Płociniczak, Ł: Diffusivity identification in a nonlinear time-fractional diffusion equation. Fract. Calc. Appl. Anal. 19(4), 843–866 (2016). https://doi.org/10.1515/fca-2016-0046

    Article  MathSciNet  MATH  Google Scholar 

  44. Płociniczak, Ł: Approximation of the Erdélyi-Kober operator with application to the time-fractional Porous medium equation. SIAM J. Appl. Math. 74(4), 1219–1237 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Płociniczak, Ł: Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting. Commun. Nonlinear Sci. Numer. Simul. 76, 66–70 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Płociniczak, Ł, Sobieszek, S.: Numerical schemes for integro-differential equations with Erdélyi-Kober fractional operator. Numer. Algorithms 76(1), 125–150 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Płociniczak, Ł, Świtała, M.: Existence and uniqueness results for a time-fractional nonlinear diffusion equation. J. Math. Anal. 462(2), 1425–1434 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Płociniczak, Ł: Numerical method for the time-fractional porous medium equation. SIAM J. Numer. Anal. 57(2), 638–656 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Okrasińska-Płociniczak, H., Płociniczak, Ł: Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line. Appl. Math. Comput. 424, 127033 (2022)

    MathSciNet  MATH  Google Scholar 

  50. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1998)

    MATH  Google Scholar 

  51. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. 382(1), 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Ser. Comput. Math. 41, Springer, Heidelberg (2011)

  53. Sneddon, I.N.: The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations. In: Lect. Notes Math., 457, 37–79, Springer–Verlag, New York (1975)

  54. Stynes, M.: A survey of the L1 scheme in the discretisation of time-fractional problems. https://doi.org/10.13140/RG.2.2.27671.60322

  55. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    MATH  Google Scholar 

  57. Wang, J.R., Dong, X.W., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Commun. Nonlinear Sci. Numer. Simul. 17(8), 3129–3139 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Watkins, N.W., Credgington, D., Sánchez, R., Rosenberg, S.J., Chapman, S.C.: Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Phys. Rev. E 79(4), 041124 (2009)

    Google Scholar 

  59. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49(6), 2302–2322 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both Authors are very grateful to the anonymous Reviewers whose valuable comments helped to make the paper more complete and clarify the presentation of the main results. Moreover, we would also like to thank the Editor whose remarks helped to improve the quality of the paper. The research of MŚ was partially supported by NCN Sonata Bis Grant No. 2019/34/E/ST1/00360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Świtała.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the following section, we present a rigorous proof of Theorem 1.

Proof of Theorem 1

The asymptotic relation for Erdélyi–Kober fractional integral operator \(I_{\alpha /\beta }^{0,\beta }\) was given in [46], therefore we will not provide a detailed proof of it here.

Since we know the order of discretization of Erdélyi–Kober fractional integral operator, we proceed to find the order of discrete representations of the operator \(D_{\alpha /\beta }^{\beta -1,1-\beta }\). At the beginning, let us consider the operator \(G_{\alpha /\beta }^{\beta -1,1-\beta }\). Note that Erdélyi–Kober fractional differential operator can be rewritten as

$$\begin{aligned} D_{\alpha /\beta }^{\beta -1,1-\beta }\psi (t_n)&= \beta I_{\alpha /\beta }^{0,\beta }\psi (t_n)+\frac{\beta }{\alpha }t_n\frac{d}{d t}I_{\alpha /\beta }^{0,\beta }\psi (t_n) =\beta L_{\alpha /\beta }^{0,\beta }\psi (t_n) +\beta R_n\\&\quad + \frac{\beta }{\alpha }t_n\frac{d}{d t}I_{\alpha /\beta }^{0,\beta }\psi (t_n)\\&= \beta L_{\alpha /\beta }^{0,\beta }\psi (t_n) +\beta R_n + \frac{\beta }{\alpha } t_n {\overline{\partial }} L_{\alpha /\beta }^{0,\beta }\psi (t_n) + \frac{\beta }{\alpha }{\widehat{R}}_n, \end{aligned}$$

where \(R_n\) is a discretization error of the Erdélyi–Kober fractional integral operator (2.6) and \({\widehat{R}}_n= t_n (\frac{d}{d t}I_{\alpha /\beta }^{0,\beta }\psi (t_n) - {\overline{\partial }}I_{\alpha /\beta }^{0,\beta }\psi (t_n)+ {\overline{\partial }}I_{\alpha /\beta }^{0,\beta }\psi (t_n)- {\overline{\partial }}L_{\alpha /\beta }^{0,\beta }\psi (t_n))={\widehat{R}}_{n,1}+{\widehat{R}}_{n,2}\). The first difference, \({\widehat{R}}_{n,1}\), can be estimated in a standard way

$$\begin{aligned} {\widehat{R}}_{n,1}&= \frac{d}{d t}I_{\alpha /\beta }^{0,\beta }\psi (t_n) - \frac{1}{k}(I_{\alpha /\beta }^{0,\beta }\psi (t_n)-I_{\alpha /\beta }^{0,\beta }\psi (t_{n-1}))\\&= \frac{1}{n} \frac{d^2}{d t^2} I_{\alpha /\beta }^{0,\beta }\psi (t^{*})= \frac{\varGamma \bigl (\frac{2 \beta }{\alpha }+1\bigr )}{\varGamma \bigl (\frac{2 \beta }{\alpha }+\beta +1\bigr )} \psi ''(\sigma ^* t^*) \frac{1}{n}, \end{aligned}$$

where \(\sigma ^* \in (0,1)\) and \(t^* \in [t_{n-1},t_n]\). However, to estimate the order of the second term in \({\widehat{R}}_n\), we need to investigate this term carefully. Note that using again the Mean Value Theorem for Integrals and Sums, and the relation \(c_{n,i}<c_{n-1,i}\) for \(i\in \{1,2,\ldots ,n-1\}\) we have

$$\begin{aligned} {\widehat{R}}_{n,2}&= \frac{t_n}{k}\sum \limits _{i=1}^{n-1} \frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{i-1}^{i}(f(n,s)-f(n-1,s))(\psi (i k)-\psi (s k))\, d s\\&\quad + \frac{t_n}{k}\frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{n-1}^{n} f(n,s)(\psi (n k)-\psi (s k))\, d s\\&= t_n \psi '(x k) \sum \limits _{i=1}^{n-1} \frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{i-1}^{i}(f(n,s)-f(n-1,s))(i-s)\, d s\\&\quad + t_n \psi '(x_n k)\frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{n-1}^{n}f(n,s)(n-s)\, d s, \end{aligned}$$

where \(i-1\le s<\sigma _i <i\), \(0<x<n-1,\ n-1<x_n<n\) and

$$\begin{aligned} f(n, s):= \frac{1}{n}\biggl (\frac{s}{n}\biggr )^{\frac{\alpha }{\beta }-1} \biggl (1-\biggl (\frac{s}{n}\biggr )^{\frac{\alpha }{\beta }}\biggr )^{\beta -1}. \end{aligned}$$

Furthermore, performing a straightforward calculation, we get

$$\begin{aligned} C_n:=\sum \limits _{i=1}^{n} \frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{i-1}^{i}f(n,s) (i-s) \, d s\le \sum \limits _{i=1}^{n} \frac{\alpha }{\beta \varGamma (\beta )}\int \limits _{i-1}^{i}f(n,s) \, d s=\frac{1}{\beta \varGamma (\beta )}. \end{aligned}$$

Moreover, note that \(C_n\) can also be written in the following way

$$\begin{aligned} C_n= \sum \limits _{i=0}^{n-1} \frac{1}{\beta \varGamma (\beta )} \biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^\beta - \frac{n \varGamma \bigl (\frac{\beta }{\alpha }+1\bigr )}{\varGamma \bigl (\frac{\beta }{\alpha }+\beta +1\bigr )}. \end{aligned}$$
(6.1)

Next, we use the Intermediate Value Theorem to get

$$\begin{aligned} \begin{aligned}&\alpha \biggl (\psi '(x k) \sum \limits _{i=1}^{n-1} \int \limits _{i-1}^{i}f(n,s) (i-s)\, d s + \psi '(x_n k) \int \limits _{n-1}^{n} f(n,s)(n-s)\, d s \biggr )\\&\quad = \beta \varGamma (\beta )\psi '(x^* k) C_n, \end{aligned} \end{aligned}$$
(6.2)

where \(x^*\in (x, x_n)\). Finally, we have

$$\begin{aligned} \begin{aligned} {\widehat{R}}_{n,2}&= t_n (\psi '(x^* k) C_n - \psi '(x k) C_{n-1}) \\&= t_n \psi '(x^* k) (C_n-C_{n-1})+ t_n C_n (\psi '(x^* k)-\psi '(x k))\\&= t_n \psi '(x^* k) (C_n-C_{n-1})+ t_n C_n (x^*-x) k \psi ''(x^{* *} k), \end{aligned} \end{aligned}$$

where \(x^{* *}\in (x,x^*)\). Let us notice that the difference \(|x-x^*|\) does not increase when n becomes larger: \(\psi \) is continuously differentiable on the interval \([0,t_n]\) and due to the fact that when increasing n the contribution of the integral in the second term in (6.2) to \(C_n\) becomes negligible. Next, we use (6.1) to obtain

$$\begin{aligned} \begin{aligned} \frac{\beta \varGamma (\beta )}{\alpha }(C_n-C_{n-1})=&\sum \limits _{i=0}^{n-1} \frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^\beta -\frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n-1}\biggr )^{\alpha /\beta }\biggr )^\beta \\&-\frac{\beta \varGamma (\beta ) \varGamma \bigl (1+\frac{\beta }{\alpha }\bigr )}{\alpha \varGamma \bigl (\frac{\beta }{\alpha }+\beta +1\bigr )}\\ =&\sum \limits _{i=0}^{n-1} \biggl [ \frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^\beta -\frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n-1}\biggr )^{\alpha /\beta }\biggr )^\beta \\&\ \qquad -\frac{i}{n}\int \limits _{\frac{i}{n}}^{\frac{i+1}{n}} s^{\frac{\alpha }{\beta }-1}(1-s^{\frac{\alpha }{\beta }})^{\beta -1} \, d s\biggr ] \\&+ \sum \limits _{i=0}^{n-1} \frac{i}{n}\int \limits _{\frac{i}{n}}^{\frac{i+1}{n}} s^{\frac{\alpha }{\beta }-1}(1-s^{\frac{\alpha }{\beta }})^{\beta -1}\biggl (\frac{i}{n}-s\biggr ) \, d s =S_1 + S_2. \end{aligned} \end{aligned}$$

Note that the absolute value of the second term can be easily bounded from above as follows

$$\begin{aligned} |S_2|&\le \sum \limits _{i=0}^{n-1}\int \limits _{\frac{i}{n}}^{\frac{i+1}{n}} s^{\frac{\alpha }{\beta }-1}(1-s^{\frac{\alpha }{\beta }})^{\beta -1} \biggl (s-\frac{i}{n}\biggr )\, d s\\&\le \frac{1}{n} \sum \limits _{i=0}^{n-1} \int \limits _{\frac{i}{n}}^{\frac{i+1}{n}} s^{\frac{\alpha }{\beta }-1}(1-s^{\frac{\alpha }{\beta }})^{\beta -1} \, d s=\frac{1}{\alpha } \frac{1}{n}, \end{aligned}$$

where the last inequality was obtained using \(0 \le n s-i\le 1\). Considering now \(S_1\), we evaluate the integral for each i to get

$$\begin{aligned} S_1&= \sum \limits _{i=1}^n \biggl [ \frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^\beta -\frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n-1}\biggr )^{\alpha /\beta }\biggr )^\beta \\&\quad -\frac{i}{n} \biggl (\frac{1}{\alpha }\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^{\beta }-\frac{1}{\alpha }\biggl (1-\biggl (\frac{i+1}{n}\biggr )^{\alpha /\beta }\biggr )^{\beta }\biggr )\biggr ] =\sum \limits _{i=1}^n \theta _i. \end{aligned}$$

Next, for each \(i\in \{1,2,\ldots ,n-2\}\) we expand \(\theta _i\) in the Taylor series for large n with fixed i/n

$$\begin{aligned} \theta _i= & {} -\frac{1}{2 \beta n^2}\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^{\beta -2} \biggl (\frac{i}{n}\biggr )^{\frac{\alpha }{\beta }-1} \biggl ( \beta \biggl (\alpha \biggl (\frac{i}{n}-1\biggr )+\frac{i}{n}+1\biggr ) \biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\\&+ \alpha -\beta -\frac{\alpha i}{n}-\frac{\beta i}{n}\biggr )\\&+{\mathcal {O}}\biggl (\frac{(1-\bigl (\frac{i}{n}\bigr ))^{\beta -2} \bigl (\frac{i}{n}\bigr )^{\frac{\alpha }{\beta }-2}}{n^3}\biggr ). \end{aligned}$$

Let us notice that for sufficiently large n we can bound \(|\theta _i|\) from above as follows

$$\begin{aligned} \begin{aligned} |\theta _i|&\le C \frac{1}{2 \beta n^2}\biggl (1-\biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\biggr )^{\beta -2} \biggl (\frac{i}{n}\biggr )^{\frac{\alpha }{\beta }-1} \biggl |\biggl ( \beta \biggl (\alpha \biggl (\frac{i}{n}-1\biggr )+\frac{i}{n}+1\biggr ) \biggl (\frac{i}{n}\biggr )^{\alpha /\beta }\\&\quad + \alpha -\beta -\frac{ i}{n}(\alpha +\beta )\biggr )\biggr |. \end{aligned} \end{aligned}$$

The formula on the right hand side of the above can be written in the shorter form, \(C\cdot W\!\left( \frac{i}{n}\right) /n^2 \), where C does not depend on n. Moreover, it is easy to note that

$$\begin{aligned} \frac{1}{n} \sum \limits _{i=1}^{n-2} W\left( \frac{i}{n}\right) \xrightarrow {n\rightarrow \infty } \int \limits _{0}^{1}W(x)\, d x, \end{aligned}$$

where convergence is the result of the definition of a Riemann sum with the set \(\{i/n:1\le i\le n-2\}\) as a partition of (0, 1) and the integrability of the function under the integral sign. The function W(x) has two singularities: at \(x=0\) and \(x=1\). Performing the standard calculation, we get \(W(x)=(\alpha -\beta )x^{\alpha /\beta -1}+{\mathcal {O}}(x^{2\alpha /\beta -1})\) as \(x\rightarrow 0\) and \(W(x)=\alpha (1+\beta )(1-x)^{\beta -1}+{\mathcal {O}}((1-x)^\beta )\) as \(x\rightarrow 1\). Since \(\alpha ,\beta >0\), the function W(x) is integrable around its singular points. Furthermore, it is easy to see that

$$\begin{aligned} \theta _0=\theta _{n-1}={\mathcal {O}}\biggl (\frac{1}{n}\biggr ), \quad \mathrm {as}\ n\rightarrow \infty . \end{aligned}$$

Based on the above considerations, we get

$$\begin{aligned} C_n-C_{n-1}={\mathcal {O}}\biggl (\frac{1}{n}\biggr ),\quad \mathrm {as} n\rightarrow \infty . \end{aligned}$$

Finally, we have

$$\begin{aligned} |t_n{\overline{\partial }}I_{\alpha /\beta }^{0,\beta }\psi (t_n) - t_n{\overline{\partial }}L_{\alpha /\beta }^{0,\beta }\psi (t_n)|\le t_n \psi '(x^* k) \frac{C_1}{n}+t_n^2 C_n C_2 \psi ''(x^{* *}k) \frac{1}{n}, \end{aligned}$$

where \(C_1\) and \(C_2\) do not depend on n. Taking into account the estimates of all components in \({\widehat{R}}_n\), we further obtain

$$\begin{aligned} \begin{aligned} |{\widehat{R}}_n|&= \biggl |t_n \biggl (\frac{d}{d t}I_{\alpha /\beta }^{0,\beta }\psi (t_n) - {\overline{\partial }}I_{\alpha /\beta }^{0,\beta }\psi (t_n)+ {\overline{\partial }}I_{\alpha /\beta }^{0,\beta }\psi (t_n)- {\overline{\partial }}L_{\alpha /\beta }^{0,\beta }\psi (t_n)\biggr )\biggr |\\&\le \frac{\beta }{\alpha }\rho _1 |\psi ''(\sigma ^* t^*)| \frac{t_n}{n} + |\psi '(x^* k)| \frac{C_1 t_n}{n}+ |\psi ''(x^{* *}k)| \frac{ C_2 C_n t_n^2}{\beta \varGamma (\beta ) n}\\&\le \frac{1}{n}\biggl [ \frac{\beta t_n}{\alpha }\rho _1 |\psi ''(t^{*})| + t_n C_1 \psi '(t^{* *})|+\frac{C_2 C_n t_n^2 }{\beta \varGamma (\beta )} |\psi ''(t^{* * *})|\biggr ], \end{aligned} \end{aligned}$$

where \(t^{*},t^{* *},t^{* * *} \in (0,t_n)\). The above estimate together with \(R_n\) yields (2.7).

Let us now consider the operator \(K_{\alpha /\beta }^{\beta -1,1-\beta }\). Similarly to the above considerations, the integral part of \(D_{\alpha /\beta }^{\beta -1,1-\beta }\) is approximated using \(\beta L_{\alpha /\beta }^{0,\beta } \). Now, let us examine solely the differentiation part of the analysed operator. Performing an appropriate transformation, we have

$$\begin{aligned} \begin{aligned}&\sum \limits _{i=1}^{n} d_{n,i} n (\psi (t_i)- \psi (t_{i-1})) - \frac{\beta \varGamma (\beta )}{\alpha } t_n \frac{d}{d t} I_{\alpha /\beta }^{0,\beta }\psi (t_n) \\&\quad = \biggl ( \sum \limits _{i=1}^{n}\int \limits _{\frac{i-1}{n}}^{\frac{i}{n}}\tau ^{\frac{\alpha }{\beta }}\bigl (1-\tau ^{\frac{\alpha }{\beta }}\bigr )^{\beta -1} n (\psi (t_i)-\psi (t_{i-1}))\, d \tau \\&\qquad -\frac{\beta \varGamma (\beta )}{\alpha } t_n \frac{d}{d t} \int \limits _{0}^{1}\tau ^{\frac{\alpha }{\beta }-1}\bigl (1-\tau ^{\frac{\alpha }{\beta }}\bigr )^{\beta -1}\psi (\tau t_n)\, d \tau \biggr )\\&\quad = \biggl ( \sum \limits _{i=1}^{n}\int \limits _{\frac{i-1}{n}}^{\frac{i}{n}}\tau ^{\frac{\alpha }{\beta }}\bigl (1-\tau ^{\frac{\alpha }{\beta }}\bigr )^{\beta -1}\biggl [ n (\psi (t_i) -\psi (t_{i-1})) - \frac{d}{d \tau }\psi (\tau t_n)\biggr ]\, d \tau \biggr ). \end{aligned} \end{aligned}$$

We use Taylor series expansion for \(\psi (x t_n)\) at the point \(x=\tau \) and obtain

$$\begin{aligned} \psi (x t_n)=\psi (\tau t_n)+ \frac{d }{d x}\psi (\tau t_n) (x-\tau ) + \frac{t_n^2}{2} \psi ''(\xi t_n) (x-\tau )^2,\quad \xi \in (\tau ,x). \end{aligned}$$

Therefore, the expression in the square bracket under the integral sign can be rewritten in the following way

$$\begin{aligned} \begin{aligned} n (\psi (t_i)-\psi (t_{i-1}))- \frac{d}{d \tau }\psi (\tau t_n)&= n \frac{t_n^2}{2}\biggl ( \psi ''(\xi _i t_n) \biggl (\frac{i}{n}-\tau \biggr )^2\\&\quad -\psi ''(\xi _{i-1} t_n) \biggl (\frac{i-1}{n}-\tau \biggr )^2\biggr ), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \bigl | \frac{\alpha }{\beta \varGamma (\beta )} \sum \limits _{i=1}^{n}&d_{n,i} n (\psi (t_i)-\psi (t_{i-1})-t_n \frac{d}{d t} I_{\alpha /\beta }^{0,\beta }\psi (t_n) \bigr | \le \rho _2 \frac{t_n^2 |\psi ''(\sigma ^* t_n)|}{n}, \end{aligned} \end{aligned}$$

where \(\rho _2= \varGamma \bigl (1+\frac{\beta }{\alpha }\bigr )/\varGamma \bigl (\frac{\beta }{\alpha }+\beta +1\bigr )\) and \(\sigma ^*\in (0,1)\). The above inequalities end the proof.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Płociniczak, Ł., Świtała, M. Numerical scheme for Erdélyi–Kober fractional diffusion equation using Galerkin–Hermite method. Fract Calc Appl Anal 25, 1651–1687 (2022). https://doi.org/10.1007/s13540-022-00063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00063-x

Keywords

Mathematics Subject Classification

Navigation