Log in

Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The arbitrary amplitude ion-acoustic (IA) (un)modulated electrostatic structures including unmodulated solitary waves (SWs) and freak waves (FWs) in a magnetized and collisionless electron-ion plasma with pressure anisotropy are investigated. The present investigation is divided into two main objectives: for the first one, an energy integral equation is derived using the Sagdeev approach for studying the characteristics of large amplitude unmodulated SWs. The Sagdeev potential is analyzed numerically to confine the existence regions of large amplitude SWs and for determining the polarity of the SWs. The numerical analysis of the present model shows that only positive potential nonlinear SWs can exist. With respect to the second objective, the FWs are studied by analyzing the two-dimensional-nonlinear Schrodinger equation (2D-NLSE). The requirements for the presence of FWs are discussed based on the physical factors of the present model. The impacts of physical plasma parameters on the characteristic properties of both unmodulated SWs and FWs are examined. The obtained results are useful in understanding the mystery of many phenomena in astrophysical and space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. R.A. Treumann, W. Baumjohann, Basic Space Plasma Physics (Revised Edition, Imperial College Press, London, 2001)

  2. G.F. Chew, M.L. Goldberger, F.E. Low, Proc. R. Soc. London A 236, 112 (1956)

    Article  ADS  Google Scholar 

  3. G.K. Parks, Physics of Space Plasmas (Perseus, USA, 1991)

  4. C.R. Choi, C.M. Ryu, D.Y Lee, N.C. Lee, Y.H. Kim, Phys. Lett. A 364, 297 (2007)

  5. R.E. Denton, B.J. Anderson, S.P. Gary, S.A. Fuselier, J. Geophys. Res. 99, 11 (1994)

    Article  Google Scholar 

  6. E.I. El-Awady, S.A. El-Tantawy, W.M. Moslem, P.K. Shukla, Phys. Lett. A 374, 3216 (2010)

    Article  ADS  Google Scholar 

  7. S.K. El-Labany, W.M. Moslem, Kh.A. Shnishin, S.A. El-Tantawy, P.K. Shukla, Phys. Plasmas 18, 042306 (2011)

    Article  ADS  Google Scholar 

  8. S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 18, 112105 (2011)

    Article  ADS  Google Scholar 

  9. S.A. El-Tantawy, M. Tribeche, W.M. Moslem, Phys. Plasmas 19, 032104 (2012)

    Article  ADS  Google Scholar 

  10. S.A. El-Tantawy, N.A. El-Bedwehy, H.N. Abd El-Razek, S. Mahmood, Phys. Plasmas 20, 022115 (2013)

  11. S.A. El-Tantawy, N.A. El-Bedwehy, S. Khan, S. Ali, W.M. Moslem, Astrophys. Space Sci. 342, 425 (2012)

    Article  ADS  Google Scholar 

  12. S. Ali Shan, S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 20, 082104 (2013)

  13. M. Khalid, A. Althobaiti, S.K. Elagan, S.A. Alkhateeb, E.A. Elghmaz, S.A. El-Tantawy, Symmetry 13, 2232 (2021)

    Article  ADS  Google Scholar 

  14. R.Z. Sagdeev, Reviews of Plasma Physics, 4 (M. A, Leontovich, Consultants Bureau, New York, 1966)

    Google Scholar 

  15. M. Khalid, H. Khan, EPL 139, 33003 (2022)

  16. A. Rahman, M. Khalid, A. Zeb, Braz. J. Phys. 49, 726 (2019)

    Article  ADS  Google Scholar 

  17. R.S. Tiwari, S.L. Jain, J.K. Chawla, Phys. Plasmas 14, 022106 (2007)

    Article  ADS  Google Scholar 

  18. J.K. Chawla, M.K. Mishra, R.S. Tiwari, Astrophys Space Sci. 347, 283 (2013)

    Article  ADS  Google Scholar 

  19. M. Khalid, EPL 138, 53003 (2022)

    Article  ADS  Google Scholar 

  20. M. Khalid, M. Khan, A. Rahman, A. Kabir, M. Irshad, Braz. J. Phys. 52, 109 (2022)

  21. A. Rahman, M. Khalid, S.N. Naeem, E.A. Elghmaz, S.A. El-Tantawy, L.S. El-Sherif, Phys. Lett. A 384, 126257 (2020)

    Article  Google Scholar 

  22. G. Ullah, M. Saleem, M. Khan, M. Khalid, A. Rahman, S. Nabi, Contrib. Plasma Phys. 60, e202000068 (2020)

    Article  Google Scholar 

  23. M. Khalid, A. Khan, M. Khan, F. Hadi, A. Rahman, Braz. J. Phys. 51, 60 (2021)

    Article  ADS  Google Scholar 

  24. M. Khalid, A. Khan, M. Khan, D. Khan, S. Ahmad, A. Rahman, Commun. Theor. Phys. 73, 055501 (2021)

    Article  ADS  Google Scholar 

  25. M. Khalid, G. Ullah, M. Khan, S. Ahmad, S. Nabi, D. Khan, Plasma Sci. Technol. 23, 035301 (2021)

    Article  ADS  Google Scholar 

  26. M. Khalid, M. Khan, A. Rahman, F. Hadi, Indian J. Phys. 96, 1783 (2022)

    Article  ADS  Google Scholar 

  27. M. Khalid, S.A. El-Tantawy, A. Rahman, Astrophys. Space Sci. 365, 75 (2020)

    Article  ADS  Google Scholar 

  28. I. Lourek, M. Tribeche, Physica A 441, 215–220 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. L.A. Gougam, M. Tribeche, Phys. Plasmas 23, 014501 (2016)

    Article  ADS  Google Scholar 

  30. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 19, 012106 (2012)

    Article  ADS  Google Scholar 

  31. L.C. Lee, J.R. Kan, Phys. Fluids 24, 431 (1981)

    ADS  Google Scholar 

  32. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Phys. Plasmas 19, 122308 (2012)

    Article  ADS  Google Scholar 

  33. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Phys. Plasmas 21, 082304 (2014)

    Article  ADS  Google Scholar 

  34. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  36. S.A. El-Tantawy, N.A. El-Bedwehy, W.M. Moslem, J. Plasma Phys. 79, 1049 (2013)

    Article  ADS  Google Scholar 

  37. S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 21, 052112 (2014)

    Article  ADS  Google Scholar 

  38. D.-I. Yeom, B. Eggleton, Nature 450, 953 (2007)

    Article  ADS  Google Scholar 

  39. A.N. Ganshin, V.B. Efimov, G.V. Kolmakov, L.P. Mezhov-Deglin, P.V.E. McClintock, Phys. Rev. Lett. 101, 065303 (2008)

    Article  ADS  Google Scholar 

  40. A. Montina, U. Bortolozzo, S. Residori, F.T. Arecchi, Phys. Rev. Lett. 103, 173901 (2009)

    Article  ADS  Google Scholar 

  41. L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)

    Article  ADS  Google Scholar 

  42. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  43. S.K. Sharma, H. Bailung, J. Geophys. Res. Space Phys. 118, 919 (2013)

    Article  ADS  Google Scholar 

  44. P. Pathak, S.K. Sharma, Y. Nakamura, H. Bailung, Phys. Plasmas 23, 022107 (2016)

    Article  ADS  Google Scholar 

  45. M. McKerr, I. Kourakis, F. Haas, Plasma Phys. Control. Fusion 56, 035007 (2014)

    Article  ADS  Google Scholar 

  46. G.P. Veldes, J. Borhanian, M. McKerr, V. Saxena, D.J. Frantzeskakis, I. Kourakis, J. Opt. 15, 064003 (2013)

    Article  ADS  Google Scholar 

  47. S.A. El-Tantawy, A.M. Wazwaz, R. Schlickeiser, Plasma Phys. Control. Fusion 57, 125012 (2015)

    Article  ADS  Google Scholar 

  48. M.S. Ruderman, T. Talipova, E. Pelinovsky, J. Plasma Phys. 74, 639 (2008)

    Article  ADS  Google Scholar 

  49. S.A. El-Tantawy, E.I. El-Awady, R. Schlickeiser, Astrophys. Space Sci. 360, 49 (2015)

    Article  ADS  Google Scholar 

  50. S.A. El-Tantawy, E.I. El-Awady, M. Tribeche, Phys. Plasmas 22, 113705 (2015)

    Article  ADS  Google Scholar 

  51. M.S. Ruderman, Eur. Phys. J. Spec. Top. 185, 57 (2010)

    Article  Google Scholar 

  52. S.A. El-Tantawy, Astrophys. Space Sci. 361, 164 (2016)

    Article  ADS  Google Scholar 

  53. S.A. El-Tantawy, S. Ali, R. Maroof, A.M. Wazwaz, S.K. El-Labany, Indian J. Phys. 91, 939 (2017)

    Article  ADS  Google Scholar 

  54. S.A. El-Tantawy, A.M. Wazwaz, Phys. Plasmas 25, 092105 (2018)

    Article  ADS  Google Scholar 

  55. S. Guo, L. Mei, Phys. Plasmas 21, 082303 (2014)

  56. S.A. Almutlak, S.A. El-Tantawy, S.A. Shan, S.M.E. Ismaeel, Eur. Phys. J. Plus 134, 513 (2019)

  57. M. Irfan, S. Ali, S.A. El-Tantawy, S.M.E. Ismaeel, Chaos 29, 103133 (2019)

  58. S.A. El-Tantawy, T. Aboelenen, S.M. E. Ismaeel, Phys. Plasmas 26, 022115 (2019)

  59. S.A. El-Tantawy, M.H. Alshehri, F.Z. Duraihem, L.S. El-Sherif, Results Phys. 19, 103452 (2020)

  60. S.A. El-Tantawy, A.H. Salas, M.R. Alharthi, Front. Phys. 9, 580224 (2021)

  61. N.H. Aljahdaly, S.A. El-Tantawy, A.-M. Wazwaz, H.A. Ashi, J. Taibah Univ. Sci. 15, 971 (2021)

    Article  Google Scholar 

  62. N.H. Aljahdaly, S.A. El-Tantawy, Chaos 30, 053117 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  63. S.A. El-Tantawy, A.H. Salas, M.A. Hammad, S.M.E. Ismaeel, D.M. Moustafa, E.I. El-Awady, Waves Random Complex Media 31, 1708 (2021)

  64. S.A. El-Tantawy, R.A. Alharbey, and Alvaro H Salas. Chaos, Solitons & Fractals 155, 111776 (2022)

    Article  MATH  Google Scholar 

  65. S.A. El-Tantawy, A.M. Wazwaz, A. Rahman, Phys. Plasmas 24, 022126 (2017)

    Article  ADS  Google Scholar 

  66. A.S. Bains, A.P. Misra, N.S. Saini, T.S. Gill, Phys. Plasmas 17, 012103 (2010)

    Article  ADS  Google Scholar 

  67. R. Sabry, W.M. Moslem, P.K. Shukla, Plasma Phys. Control. Fusion 54, 035010 (2012)

    Article  ADS  Google Scholar 

  68. J.K. Xue, Phys. Plasmas 12, 062313 (2005)

    Article  ADS  Google Scholar 

  69. J.K. Xue, Phys. Lett. A 330, 390 (2004)

    Article  ADS  Google Scholar 

  70. S.A. El-Tantawy, E.I. El-Awady, Phys. Plasmas 25, 012121 (2018)

    Article  ADS  Google Scholar 

  71. G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)

  72. J.C. Carvalho, J.D. Do Nascimento, R. Silva, J.R. De Medeiros, Astrophys. J. Lett. 696, L48 (2009)

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R17), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. El-Tantawy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients of the NLSE (38)

$$\begin{aligned} P=&-\frac{\left( -v_{g}k+\omega \right) ^{2}+k^{3}\left[ v_{g}\left( v_{g}k+2\omega \right) -3p_{1}k\right] }{2\omega k^{2}\left( k^{2}+1\right) },\\ Q=&\ \frac{\left( \frac{1-\kappa ^{2}}{2}+g_{3}+g_{6}\right) \left( \omega ^{2}-p_{1}k^{2}\right) }{2\omega \left( k^{2}+1\right) }\\&-\left. \frac{1}{2\omega }\left[ \left( g_{1}+g_{4}\right) \left( \omega ^{2}+p_{1}k^{2}\right) +2k\omega \left( g_{2}+g_{5}\right) \right] \right. ,\\ R=&-\frac{p_{1}k^{2}}{2\omega \left( k^{2}+1\right) }+\frac{\omega \left[ \omega ^{2}-1-\Omega ^{2}-\left( k^{2}+1\right) p_{2}\right] }{2\left( k^{2}+1\right) \left( \omega ^{2}-\Omega ^{2}\right) }. \end{aligned}$$

with

$$\begin{aligned} g_{1}&=\left( 4k^{2}+1\right) g_{3}+\frac{1}{2},\\ g_{2}&=\frac{\omega }{k}g_{1}-\frac{\omega }{k}\left( k^{2}+1\right) ^{2},\\ g_{3}&=\frac{\omega ^{2}-p_{1}k^{2}-\left( k^{2}+1\right) ^{2}\left( 3\omega ^{2}+p_{1}k^{2}\right) }{2\left[ k^{2}-4k^{2}\omega ^{2}-\omega ^{2}+p_{1}k^{2}\left( 4k^{2}+1\right) \right] },\\ g_{4}&=g_{6}+1,\text { }g_{5}=-2\frac{\omega }{k}\left( k^{2}+1\right) ^{2}+v_{g}g_{4},\\ g_{6}&=\frac{k^{2}v_{g}^{2}-2\left( k^{2}+1\right) ^{2}\left( \omega ^{2}+p_{1}k^{2}+kv_{g}\omega \right) }{k^{2}\left( 1-v_{g}^{2}\right) },\\ \omega ^{2}&=p_{1}k^{2}+\frac{k^{2}}{k^{2}+1},\text { }v_{g}=k/\omega \left( p_{1}+1/\left( k^{2}+1\right) ^{2}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyousef, H.A., Khalid, M., Ata-ur-Rahman et al. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Braz J Phys 52, 202 (2022). https://doi.org/10.1007/s13538-022-01199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01199-0

Keywords

Navigation