Log in

Thermal decomposition of crude and de-oiled shea almond cakes: kinetic and thermodynamic characteristics study using thermogravimetric analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Shea butter processing generates a large quantity of residues in the form of shea almond cakes while a certain amount of firewood is burned to satisfy the energy demand of the process. In this study, the physicochemical, thermal, kinetic and thermodynamic properties of shea churning mud (SCM), shea press cake (SPC) and de-oiled shea press cake (dSPC), obtained from different shea butter extraction processes, were investigated. Thermogravimetric analyses were performed under inert and oxidative atmospheres with temperatures ranging from 25 to 800 °C. Kinetic (Eα and Aα) and thermodynamic (ΔHα, ΔGα and ΔSα) parameters of the combustion process were carried out using the isoconversional approach. The results showed that the main decomposition stages of the pyrolysis process of the three residues occur between 150 and 450 °C. A high residual fat content was found in SCM (24.23%) compared to those of SPC (19.79%) and dSPC (3.14%). Conversely, SCM exhibited a lower ignition temperature (232 °C) than the other two samples (~ 240 °C) at a heating rate of 10 °C.min−1. The Friedman, KAS and Vyazovkin methods were used to determine the activation energy and pre-exponential factor of the combustion process. Friedman method was found more accurate in simulating the combustion experimental data. The average values of ΔHα obtained from SCM, SPC and dSPC were 108.39, 84.47 and 82.78 kJ.mol−1 respectively. The obtained results will pave the way for further exploration of shea almond cakes as an energy source and will provide important information for the design of an optimised thermochemical conversion reactor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials could be made available if requested.

References

  1. ‘Tracking SDG 7: the energy progress report’. Accessed: Jun. 15, 2022. [Online]. Available: https://www.irena.org/publications/2022/Jun/Tracking-SDG-7-2022

  2. Ravikumar P, Rajeshkumar G, Manimegalai P, Sumesh KR, Sanjay MR, Siengchin S (2022) Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: consequence of sodium bicarbonate treatment. J Ind Text 51(1_suppl):360S-377S. https://doi.org/10.1177/15280837221077040

    Article  CAS  Google Scholar 

  3. Sumesh K, Kanthavel K (2022) Grey relational optimization for factors influencing tensile, flexural, and impact properties of hybrid sisal banana fiber epoxy composites. J Ind Text 51(3_suppl):4441S-4459S. https://doi.org/10.1177/1528083720928501

    Article  CAS  Google Scholar 

  4. A Otaiku ‘Shea cake waste: gateway to bio-economy in Africa’, Global Shea Alliance (GSA), Jan. 2018, Accessed: Jun. 14, 2023. [Online]. Available: https://www.academia.edu/42700911/Shea_Cake_Waste_Gateway_to_Bio_economy_in_Africa

  5. Dao A, Coulibaly P, Lamien N, Toé P (2019) Demande en bois-énergie et rentabilité économique de la préparation de la bière locale et du beurre de karité au Burkina Faso. J Animal Plant Sci 42(3):7303–7313. https://doi.org/10.35759/JAnmPlSci.v42-3.3

    Article  Google Scholar 

  6. Iddrisu A-M (2013) Biochemical and microbiological analysis of shea nut cake: a waste product from shea butter processing. J Agric Biotechnol Sustain Dev 5:61–68. https://doi.org/10.5897/JABSD12.031

    Article  CAS  Google Scholar 

  7. Melzer M, Blin J, Bensakhria A, Valette J, Broust F (2013) Pyrolysis of extractive rich agroindustrial residues. J Anal Appl Pyrol 104:448–460. https://doi.org/10.1016/j.jaap.2013.05.027

    Article  CAS  Google Scholar 

  8. Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497. https://doi.org/10.1016/j.apenergy.2011.12.056

    Article  ADS  CAS  Google Scholar 

  9. Lim ACR, Chin BLF, Jawad ZA, Hii KL (2016) Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng 148:1247–1251. https://doi.org/10.1016/j.proeng.2016.06.486

    Article  CAS  Google Scholar 

  10. Tahir MH, Zhao Z, Ren J, Rasool T, Naqvi SR (2019) Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenerg 122:193–201. https://doi.org/10.1016/j.biombioe.2019.01.009

    Article  CAS  Google Scholar 

  11. Huang J et al (2018) Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: thermal conversion, kinetic, thermodynamic and emission analyses. Biores Technol 266:389–397. https://doi.org/10.1016/j.biortech.2018.06.106

    Article  CAS  Google Scholar 

  12. Wu W, Mei Y, Zhang L, Liu R, Cai J (2015) Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel 156:71–80. https://doi.org/10.1016/j.fuel.2015.04.016

    Article  CAS  Google Scholar 

  13. Bahú JO et al (2022) Kinetic study of thermal decomposition of sugarcane bagasse pseudo-components at typical pretreatment conditions: simulations of opportunities towards the establishment of a feasible primary biorefining. Clean Chem Eng 4:100074. https://doi.org/10.1016/j.clce.2022.100074

    Article  Google Scholar 

  14. Chen Z, Lei J, Li Y, Su X, Hu Z, Guo D (2017) Studies on thermokinetic of Chlorella pyrenoidosa devolatilization via different models. Biores Technol 244:320–327. https://doi.org/10.1016/j.biortech.2017.07.144

  15. Rahib Y, Sarh B, Bostyn S, Bonnamy S, Boushaki T, Chaoufi J (2020) Non-isothermal kinetic analysis of the combustion of argan shell biomass. Mater Today: Proceedings 24:11–16

  16. Kumar Mishra R, Mohanty K (2021) Kinetic analysis and pyrolysis behavior of low-value waste lignocellulosic biomass for its bioenergy potential using thermogravimetric analyzer. Mater Sci Energy Tech 4:136–147. https://doi.org/10.1016/j.mset.2021.03.003

  17. Fawzy S, Osman AI, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW (2022) Kinetic modelling for pyrolytic degradation of olive tree pruning residues with predictions under various heating configurations. Process Saf Environ Prot 161:221–230. https://doi.org/10.1016/j.psep.2022.03.042

  18. Sharma A, Aravind Kumar A, Mohanty B, Sawarkar AN (2023) Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis. Renew Energy 210:321–334. https://doi.org/10.1016/j.renene.2023.04.066

  19. Rajamohan S et al (2023) Investigation of thermodynamic and kinetic parameters of Albizia lebbeck seed pods using thermogravimetric analysis. Biores Technol 384:129333. https://doi.org/10.1016/j.biortech.2023.129333

  20. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Biores Technol 100(3):1413–1418

  21. Darvell LI et al (2010) Combustion properties of some power station biomass fuels. Fuel 89(10):2881–2890. https://doi.org/10.1016/j.fuel.2010.03.003

  22. Musah M, Umar M, Alkali M (2021) Preliminary studies on biofuel potentials of shea nut cakes in Niger State, Nigeria. Caliphat J of Sc and Tech 1:76–82

  23. Álvarez A, Pizarro C, García R, Bueno JL, Lavín AG (2016) Determination of kinetic parameters for biomass combustion. Biores Technol 216:36–43. https://doi.org/10.1016/j.biortech.2016.05.039

  24. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1–2):163–176

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520(1):1. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  26. Lu J-J, Chen W-H (2015) Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy 160:49–57. https://doi.org/10.1016/j.apenergy.2015.09.026

  27. Sobek S, Werle S (2020) Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 261:116459. https://doi.org/10.1016/j.fuel.2019.116459

  28. Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA (2014) An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind Crops Prod 61:49–61. https://doi.org/10.1016/j.indcrop.2014.06.027

  29. Vassilev SV, Vassileva CG, Song Y-C, Li W-Y, Feng J (2017) Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 208:377–409. https://doi.org/10.1016/j.fuel.2017.07.036

  30. Cai J et al (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309–322. https://doi.org/10.1016/j.rser.2017.03.072

  31. Martín-Lara MA, Pérez A, Vico-Pérez MA, Calero M, Blázquez G (2019) The role of temperature on slow pyrolysis of olive cake for the production of solid fuels and adsorbents. Process Saf Environ Prot 121:209–220. https://doi.org/10.1016/j.psep.2018.10.028

  32. Volli V, Singh RK (2013) Pyrolysis kinetics of de-oiled cakes by thermogravimetric analysis. J Renew Sustain Energy 5(3):033130. https://doi.org/10.1063/1.4811794

  33. Evon P, Vinet J, Labonne L, Rigal L (2015) Influence of thermo-pressing conditions on the mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake. Ind Crops Prod 65:117–126. https://doi.org/10.1016/j.indcrop.2014.11.036

  34. **gura RM, Kamusoko R (2018) Technical options for valorisation of Jatropha press-cake: a review. Waste Biomass Valor 9(5):701–713. https://doi.org/10.1007/s12649-017-9837-9

  35. Kumar Singh R, Patil T, Pandey D, Sawarkar AN (2021) Pyrolysis of mustard oil residue: a kinetic and thermodynamic study. Bioresource Technol 339:125631. https://doi.org/10.1016/j.biortech.2021.125631

  36. Zhang X et al (2022) Highly-efficient nitrogen self-doped biochar for versatile dyes’ removal prepared from soybean cake via a simple dual-templating approach and associated thermodynamics. J Clean Prod 332:130069. https://doi.org/10.1016/j.jclepro.2021.130069

  37. Gouda N, Panda AK (2019) Determination of kinetic and thermodynamic parameters of thermal degradation of different biomasses for pyrolysis. Biocatal Agric Biotechnol 21:101315. https://doi.org/10.1016/j.bcab.2019.101315

  38. Idris SS, Rahman NA, Ismail K (2012) Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Biores Technol 123:581–591. https://doi.org/10.1016/j.biortech.2012.07.065

  39. Lawer-Yolar G, Dawson-Andoh B, Atta-Obeng E (2019) Novel phase change materials for thermal energy storage: evaluation of tropical tree fruit oils. Biotechnol Rep 24:e00359. https://doi.org/10.1016/j.btre.2019.e00359

  40. Li XG, Lv Y, Ma BG, Jian SW, Tan HB (2011) Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Biores Technol 102(20):9783–9787. https://doi.org/10.1016/j.biortech.2011.07.117

  41. Wang Q, Zhao W, Liu H, Jia C, Xu H (2012) Reactivity and kinetic analysis of biomass during combustion. Energy Procedia 17:869–875. https://doi.org/10.1016/j.egypro.2012.02.181

  42. E Moukhina (2013) ‘Initial kinetic parameters for the model-based kinetic method.’ High Temperatures–High Pressures 42(4)

  43. Boumanchar I et al (2019) Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes. Waste Manage 97:10–18. https://doi.org/10.1016/j.wasman.2019.07.033

  44. Fahmi R et al (2007) The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10):1560–1569. https://doi.org/10.1016/j.fuel.2006.11.030

  45. Liu Z et al (2013) Synergistic effects of mineral matter on the combustion of coal blended with biomass. J Therm Anal Calorim 113:489–496

  46. Oladejo J, Adegbite S, Gao X, Liu H, Wu T (2018) Catalytic and non-catalytic synergistic effects and their individual contributions to improved combustion performance of coal/biomass blends. Appl Energy 211:334–345

  47. Wang G et al (2016) Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Convers Manage 124:414–426. https://doi.org/10.1016/j.enconman.2016.07.045

    Article  CAS  Google Scholar 

  48. BoubacarLaougé Z, Merdun H (2020) Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresource Technology 299:122602. https://doi.org/10.1016/j.biortech.2019.122602

  49. Vyazovkin S et al (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. https://doi.org/10.1016/j.tca.2020.178597

    Article  CAS  Google Scholar 

  50. Tahir MH, Mahmood MA, Çakman G, Ceylan S (2020) Pyrolysis of oil extracted safflower seeds: product evaluation, kinetic and thermodynamic studies. Biores Technol 314:123699. https://doi.org/10.1016/j.biortech.2020.123699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jérémy Valette and Lea Fulloy from Cirad for their analysis facilitating.

Funding

This research was supported by the World Bank through the Africa Centers of Excellence Project (ACE), especially the Engineering College Project (CoE-2iE), grant numbers: IDA 6388-BF/D443-BF. Biomass characterisation were supported by the European Union (EU) and the Agence Française de Développement (AFD) through the BioStar project “des bioenergies pour les PME de l’Afrique de l’Ouest”, grant numbers: N°FOOD/2019/410–794.

Author information

Authors and Affiliations

Authors

Contributions

Supervision: IWKO, MS, AB; conceptualization: TLA, IWKO and MS; methodology: TLA and IWKO; experiments: TLA; writing the original draft: TLA; writing, review and editing: TLA, IWKO, MS and TST; funding acquisition: IWKO and MS.

Corresponding author

Correspondence to Igor W. K. Ouédraogo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Kinetic and thermodynamic studies of SCM, SPC and dSPC combustion were performed.

• SCM (232 °C) exhibited lower ignition temperature than both SPC and dSPC (~ 240 °C).

• Energy barriers (Eα − ΔHα) increased with α and average values were ~ 5 kJ.mol−1.

• Friedman method showed the best fit to experimental data of the combustion of samples.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acka, T.L., Sawadogo, M., Tanoh, T.S. et al. Thermal decomposition of crude and de-oiled shea almond cakes: kinetic and thermodynamic characteristics study using thermogravimetric analysis. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05407-6

Keywords

Navigation