Log in

Thermal analysis and determination of kinetics and thermodynamics for pyrolysis of soybean de-oiled cake using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper described the thermal decomposition and determined the thermodynamics and kinetics for pyrolysis of soybean de-oiled cake (soya DOC). Authors analysed the physicochemical characteristics of biomass based on proximate, elemental, lignocellulosic balance, calorific value, and FTIR results. The thermogravimetric data of soya DOC were obtained at 10, 20, and 30 °C min‒1 heating rates in an inert system. Thermal analysis of soya DOC reveals that the significant mass loss occurred between 200 and 550 °C temperature ranges. The kinetic parameters (activation energy and pre-exponential factor) and thermodynamic parameters (changes in enthalpy, entropy and Gibb’s free energy) were examined by Kissinger, KAS, OFW, and CR methods. Kissinger method gives Ea 121.05 kJ mol‒1, while OFW and KAS give 162.33 and 151.88 kJ mol‒1, respectively. Results reveal that the Ea depends on decomposition. For soya DOC, the pre-exponential factor is found between 4.12 × 1012 and 6.39 × 1013 min−1, and this range depends on heating rates and conversion. In order to assess the importance of the soya DOC as a pyrolysis feedstock, the activation energy of soya DOC is also compared with the other biomass and the results are found satisfactory. Simulation of soya DOC pyrolysis using data obtained from TGA analysis showed good agreement with experimental data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Abbreviations

Soya DOC:

Soybean de-oiled cake

HHV:

Higher heating value

FTIR:

Fourier transform infrared spectroscopy

DTG:

Differential thermal analysis

TGA:

Thermogravimetric analysis

TG:

Thermogravimetric

OFW:

Ozawa–Flynn–Wall

KAS:

Kissinger–Akahira–Sunose

CR:

Coats–Redfern

HR:

Heating rate

E a :

Activation energy

VM:

Volatile matter

M:

Moisture

AS :

Ash

FC:

Fixed carbon

C:

Carbon

H:

Hydrogen

S:

Sulphur

N:

Nitrogen

O:

Oxygen

T m :

Temperature at maximum decomposition

g(α):

Conversion or decomposition Function

k(T):

Rate constant

A :

Pre-exponential factor

R :

Ideal gas constant

T :

Operating temperature

α :

Decomposition/conversion

R 2 :

Regression coefficient

β :

Heating rate

\(\Delta H^\circ\) :

Enthalpy change

\(\Delta S^\circ\) :

Entropy change

\(\Delta G^\circ\) :

Gibb’s free energy change

K B :

Boltzmann’s constant

H :

Plank’s constant

n :

Reaction order

References

  1. Oladeji JT, Itabiyi EA, Okekunle PO. A comprehensive review of biomass pyrolysis as a process of renewable energy generation. J Natural Sci Res. 2015;5(5):99–105.

    Google Scholar 

  2. Danje S. Fast pyrolysis of corn residues for energy production (doctoral dissertation). Stellenbosch: Stellenbosch University; 2011.

    Google Scholar 

  3. Jayaraman K, Kok MV, Gokalp I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Appl Thermal Engin. 2017;125:1446–55. https://doi.org/10.1016/j.applthermaleng.2017.07.128.

    Article  CAS  Google Scholar 

  4. Santos NA, Magriotis ZM, Saczk AA, Fássio GT, Vieira SS. Kinetic study of pyrolysis of castor beans (Ricinus communis L.) press cake: an alternative use for solid waste arising from the biodiesel production. Energy Fuels. 2015;29(4):2351–7.

    Article  CAS  Google Scholar 

  5. Varma AK, Mondal P. Physicochemical characterisation and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2016;124(1):487–97. https://doi.org/10.1007/s10973-015-5126-7.

    Article  CAS  Google Scholar 

  6. Zhang J, Zhong Z, Zhang B, Xue Z, Guo F, Wang J. Prediction of kinetic parameters of biomass pyrolysis based on the optimal mixture design method. Clean Techn Environ Policy. 2016;18(5):1621–9. https://doi.org/10.1007/s10098-016-1137-8.

    Article  CAS  Google Scholar 

  7. Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy. 2018;129:695–716. https://doi.org/10.1016/j.renene.2017.04.035.

    Article  CAS  Google Scholar 

  8. Kok MV, Özgür E. Thermal analysis and kinetics of biomass samples. Fuel Proc Technol. 2013;106:739–43. https://doi.org/10.1016/j.fuproc.2012.10.010.

    Article  CAS  Google Scholar 

  9. Alper K, Tekin K, Karagöz S. Pyrolysis of agricultural residues for bio-oil production. Clean Tech Environ Policy. 2015;17(1):211–23. https://doi.org/10.1007/s10098-014-0778-8.

    Article  CAS  Google Scholar 

  10. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91(1):1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  11. Varma AK, Mondal P. Physicochemical characterisation and pyrolysis kinetics of wood sawdust. Energy Sources Part A. 2016;38(17):2536–44. https://doi.org/10.1080/15567036.2015.1072604.

    Article  CAS  Google Scholar 

  12. Varma AK, Mondal P. Physicochemical characterisation and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Resour Technol. 2016;138(5):052205. https://doi.org/10.1115/1.4032729.

    Article  CAS  Google Scholar 

  13. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8. https://doi.org/10.1016/j.biortech.2014.01.040.

    Article  CAS  Google Scholar 

  14. Guerrero MB, da Silva Paula MM, Zaragoza MM, Gutiérrez JS, Velderrain VG, Ortiz AL, Collins-Martínez V. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int J Hydrogen Energy. 2014;39(29):16619–27. https://doi.org/10.1016/j.ijhydene.2014.06.012.

    Article  CAS  Google Scholar 

  15. Islam MA, Asif M, Hameed BH. Pyrolysis kinetics of raw and hydrothermally carbonised Karanj (Pongamia Pinnata) fruit hulls via thermogravimetric analysis. Bioresour Technol. 2015;179:227–33. https://doi.org/10.1016/j.biortech.2014.11.115.

    Article  CAS  Google Scholar 

  16. **ang Y, **ang Y, Wang L. Thermal decomposition kinetic of hybrid poplar sawdust as biomass to biofuel. J Environ Chem Engin. 2016;4(3):3303–8. https://doi.org/10.1016/j.jece.2016.07.009.

    Article  CAS  Google Scholar 

  17. Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV, Kannan R, Katti KV. Soybeans as a phytochemical reservoir for the production and stabilisation of biocompatible gold nanoparticles. Small. 2008;4(9):1425–36. https://doi.org/10.1002/smll.200800525.

    Article  CAS  Google Scholar 

  18. Soyabean Outlook – October 2021. [Available at https://pjtsau.edu.in/files/AgriMkt/2021/October/Soyabean-October-2021.pdf/, Accessed on 27/05/2022].

  19. The Soybean Processors Association of India (SOPA). [Available at-http://www.sopa.org/statistics/soybean-production-by-state/, Accessed on 16/02/2022].

  20. Ucar S, Ozkan AR. Characterisation of products from the pyrolysis of rapeseed oil cake. Bioresour Technol. 2008;99(18):8771–6. https://doi.org/10.1016/j.biortech.2008.04.040.

    Article  CAS  Google Scholar 

  21. Agrawalla A, Kumar S, Singh RK. Pyrolysis of groundnut de-oiled cake and characterisation of the liquid product. Bioresour Technol. 2011;102(22):10711–6. https://doi.org/10.1016/j.biortech.2011.08.113.

    Article  CAS  Google Scholar 

  22. Volli V, Singh RK. Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel. 2012;96:579–85. https://doi.org/10.1016/j.fuel.2012.01.016.

    Article  CAS  Google Scholar 

  23. Volli V, Singh RK. Production of bio-oil from mahua de-oiled cake by thermal pyrolysis. Renew Sustain Energy Rev. 2012;4(1):013101. https://doi.org/10.1063/1.3676074.

    Article  CAS  Google Scholar 

  24. Muktham R, Ball AS, Bhargava SK, Bankupalli S. Study of thermal behavior of deoiled karanja seed cake biomass: thermogravimetric analysis and pyrolysis kinetics. Energy Sci Engin. 2016;4(1):86–95. https://doi.org/10.1002/ese3.109.

    Article  Google Scholar 

  25. Huang X, Cao JP, Zhao XY, Wang JX, Fan X, Zhao YP, Wei XY. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel. 2016;169:93–8. https://doi.org/10.1016/j.fuel.2015.12.011.

    Article  CAS  Google Scholar 

  26. Sharma R, Sheth PN. Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA. Energy. 2018;151:1007–17. https://doi.org/10.1016/j.energy.2018.03.075.

    Article  CAS  Google Scholar 

  27. Tahir MH, Mahmood MA, Çakman G, Ceylan S. Pyrolysis of oil extracted safflower seeds: Product evaluation, kinetic and thermodynamic studies. Bioresour Technol. 2020;314:123699. https://doi.org/10.1016/j.biortech.2020.123699.

    Article  CAS  Google Scholar 

  28. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  29. Jayaraman K, Kok MV, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renew Energy. 2017;101:293–300. https://doi.org/10.1016/j.renene.2016.08.072.

    Article  CAS  Google Scholar 

  30. Jayaraman K, Kök MV, Gökalp I. Combustion mechanism and model free kinetics of different origin coal samples: thermal analysis approach. Energy. 2020;204:117905. https://doi.org/10.1016/j.energy.2020.117905.

    Article  CAS  Google Scholar 

  31. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6. https://doi.org/10.1016/j.tca.2012.04.008.

    Article  CAS  Google Scholar 

  32. Lim AC, Chin BL, Jawad ZA, Hii KL. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engin. 2016;148:1247–51. https://doi.org/10.1016/j.proeng.2016.06.486.

    Article  CAS  Google Scholar 

  33. Thakur LS, Varma AK, Mondal P. Analysis of thermal behavior and pyrolytic characteristics of vetiver grass after phytoremediation through thermogravimetric analysis. J Therm Anal Calorim. 2018;131(3):3053–64. https://doi.org/10.1007/s10973-017-6788-0.

    Article  CAS  Google Scholar 

  34. Singh G, Varma AK, Almas S, Jana A, Mondal P, Seay J. Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterisation. J Material Cycles Waste Manag. 2019;21(6):1350–60. https://doi.org/10.1007/s10163-019-00891-9.

    Article  CAS  Google Scholar 

  35. Saikia N, Bardalai M. Thermal analysis and kinetic parameters determination of biomass using differential thermal gravimetric analysis in N2 atmosphere. Mater Today Proc. 2018;5(1):2146–56. https://doi.org/10.1016/j.matpr.2017.09.212.

    Article  CAS  Google Scholar 

  36. Dhaundiyal A, Gangwar J. Kinetics of the thermal decomposition of pine needles. Acta Univ Sapientiae Agric Environ. 2015;7(1):5–22. https://doi.org/10.1515/ausae-2015-0001.

    Article  Google Scholar 

  37. Özsin G, Pütün AE. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag. 2017;64:315–26. https://doi.org/10.1016/j.wasman.2017.03.020.

    Article  CAS  Google Scholar 

  38. Sills DL, Gossett JM. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali pretreated biomasses. Biotechnol Bioenegy. 2012;109(2):353–62. https://doi.org/10.1002/bit.23314.

    Article  CAS  Google Scholar 

  39. Silverstein RM, Bassler GC. Spectrometric identification of organic compounds. J Chem Edu. 1962;39(11):546. https://doi.org/10.1021/ed039p546.

    Article  CAS  Google Scholar 

  40. Zhao Y, Ding M, Dou Y, Fan X, Wang Y, Wei X. Comparative study on the pyrolysis behaviors of corn stalk and pine sawdust using TG-MS. Trans Tian** Univ. 2014;20(2):91–6. https://doi.org/10.1007/s12209-014-2233-7.

    Article  CAS  Google Scholar 

  41. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7. https://doi.org/10.1016/j.apenergy.2011.12.056.

    Article  CAS  Google Scholar 

  42. Sbirrazzuoli N. Advanced isoconversional kinetic analysis for the elucidation of complex reaction mechanisms: a new method for the identification of rate-limiting steps. Molecules. 2019;24(9):1683. https://doi.org/10.3390/molecules24091683.

    Article  CAS  Google Scholar 

  43. Torres-García E, Ramírez-Verduzco LF, Aburto J. Pyrolytic degradation of peanut shell: activation energy dependence on the conversion. Waste Manag. 2020;106:203–12. https://doi.org/10.1016/j.wasman.2020.03.021.

    Article  CAS  Google Scholar 

  44. Mabuda AI, Mamphweli NS, Meyer EL. Model free kinetic analysis of biomass/sorbent blends for gasification purposes. Renew Sustain Energy Rev. 2016;53:1656–64. https://doi.org/10.1016/j.rser.2015.07.038.

    Article  CAS  Google Scholar 

  45. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–28. https://doi.org/10.1021/jp062746a.

    Article  CAS  Google Scholar 

  46. Zhong D, Zhong Z, Wu L, Ding K, Luo Y, Christie P. Pyrolysis of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator: pyrolysis kinetics, heavy metal behaviour and bio-oil production. Clean Techn Environ Policy. 2016;18(7):2315–23. https://doi.org/10.1007/s10098-016-1150-y.

    Article  CAS  Google Scholar 

  47. Gajera B, Panwar NL. Pyrolysis and kinetic behaviour of black gram straw using thermogravimetric analysis. Energy Sources Part A Recov Util Environ Eff. 2019. https://doi.org/10.1080/15567036.2019.1662138.

    Article  Google Scholar 

  48. Singh S, Sawarkar AN. Thermal decomposition aspects and kinetics of pyrolysis of garlic stalk. Energy Sources Part A Recov Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1716891.

    Article  Google Scholar 

  49. Singh RK, Pandey D, Patil T, Sawarkar AN. Pyrolysis of banana leaves biomass: physico-chemical characterisation, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour Technol. 2020;310:123464. https://doi.org/10.1016/j.biortech.2020.123464.

    Article  CAS  Google Scholar 

  50. Mishra RK, Mohanty K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour Technol. 2020;311:123480. https://doi.org/10.1016/j.biortech.2020.123480.

    Article  CAS  Google Scholar 

  51. Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C. Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res. 2016;9(1):1–14. https://doi.org/10.1007/s12155-015-9694-y.

    Article  CAS  Google Scholar 

  52. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119(1):651–7. https://doi.org/10.1007/s10973-014-4179-3.

    Article  CAS  Google Scholar 

  53. Chandrasekaran A, Ramachandran S, Subbiah S. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis Juliflora using thermogravimetric analysis. Bioresour Technol. 2017;233:413–22. https://doi.org/10.1016/j.biortech.2017.02.119.

    Article  CAS  Google Scholar 

  54. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–13. https://doi.org/10.1016/j.biortech.2016.10.090.

    Article  CAS  Google Scholar 

  55. Alhumade H, da Silva JC, Ahmad MS, Çakman G, Yıldız A, Ceylan S, Elkamel A. Investigation of pyrolysis kinetics and thermal behavior of Invasive Reed Canary (Phalaris Arundinacea) for bioenergy potential. J Anal Appl Pyrol. 2019;140:385–92. https://doi.org/10.1016/j.jaap.2019.04.018.

    Article  CAS  Google Scholar 

  56. Gupta GK, Mondal MK. Iso-conversional kinetic and thermodynamic studies of Indian sagwan sawdust pyrolysis for its bioenergy potential. Environ Prog Sustain Energy. 2019;38(4):13131. https://doi.org/10.1002/ep.13131.

    Article  CAS  Google Scholar 

  57. Guida M, Lanaya S, Rbihi Z, Hannioui A. Thermal degradation behaviours of sawdust wood waste: pyrolysis kinetic and mechanism. J Mater Environ Sci. 2019;10:742–55.

    CAS  Google Scholar 

  58. Sriram A, Swaminathan G. Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies. Bioresour Technol. 2018;265:236–46. https://doi.org/10.1016/j.biortech.2018.05.043.

    Article  CAS  Google Scholar 

  59. Malika A, Jacques N, Fatima B, Mohammed A. Pyrolysis investigation of food wastes by TG-MS-DSC technique. Biomass Conv Bioref. 2016;6(2):161–72. https://doi.org/10.1007/s13399-015-0171-9.

    Article  CAS  Google Scholar 

  60. Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–93. https://doi.org/10.1016/j.biortech.2013.07.086.

    Article  CAS  Google Scholar 

  61. Xu Z, **ao X, Fang P, Ye L, Huang J, Wu H, Tang Z, Chen D. Comparison of combustion and pyrolysis behavior of the peanut shells in air and N2: kinetics, thermodynamics and gas emissions. Sustainability. 2020;12(2):464. https://doi.org/10.3390/su12020464.

    Article  CAS  Google Scholar 

  62. Aboulkas A, Nadifiyine M, Benchanaa M, Mokhlisse A. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Proc Technol. 2009;90(5):722–8. https://doi.org/10.1016/j.fuproc.2009.01.016.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

OPB, LST, and AKV planned and designed the research. OPB performed the experiments and analysed the data. LST supervised the work, and so on. LST, AKV, VN, RS, and PM wrote the manuscript.

Corresponding author

Correspondence to Lokendra Singh Thakur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamboriya, O.P., Varma, A.K., Shankar, R. et al. Thermal analysis and determination of kinetics and thermodynamics for pyrolysis of soybean de-oiled cake using thermogravimetric analysis. J Therm Anal Calorim 147, 14381–14392 (2022). https://doi.org/10.1007/s10973-022-11610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11610-2

Keywords

Navigation