Log in

An insight on upgrading of biomass pyrolysis products and utilization: Current status and future prospect of biomass in India

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is seen as a promising environmentally benign replacement for carbon-based fuels as well as a feedstock for chemicals. The energy contained in biomass can be explored using variety of ways. Pyrolysis is the first step in both gasification and combustion and is the most fundamental process in the thermochemical conversion of biomass. The pyrolysis products, namely the liquid product (bio-oil and aqueous condensate) and the char, however, could not be used as a direct source of fuel due to their limitation of quality and thus require upgradation. Thus, further advancements in pyrolysis technology, such as pre-treatment of raw materials and/or post-treatment or downstream processing of raw pyrolysis products to generate upgraded fuel with attributes similar to those of fossil fuels, are critical for effective biomass utilization. The present work provides a broad overview of the detailed biomass type and their composition, exhaustive insights about the pyrolysis process as a biomass conversion technology as well as the pyrolysis products. The most important aspects of the manuscript is to highlight the research undertaken for the upgradation of the different pyrolysis products to obtain a high quality end products that could substitute the fossil fuel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3

Similar content being viewed by others

References

  1. Bar-on YM, Phillips R, Milo R (2018) The biomass distribution on Earth Proc Natl Acad Sci USA 115:6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sust Energ Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  3. Al-Sabawi M, Chen J (2012) Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks: A review. Energy Fuels 26:5373–5399. https://doi.org/10.1021/ef3006405

    Article  CAS  Google Scholar 

  4. Kumar S, Agrawalla A, Singh RK (2011) Thermogravimetric analysis of groundnut cake. Int J Chem Engg Appl 2(4):268–271. https://doi.org/10.7763/IJCEA.2011.V2.115

    Article  CAS  Google Scholar 

  5. Raza M, Inayat I, Ahmed A, Jamil F, Ghenai C, Naqvi SR, Shanableh A, Ayoub M, Waris A, Park YK (2021) Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability 13:11061. https://doi.org/10.3390/su131911061

    Article  CAS  Google Scholar 

  6. Liu T, Miao P, Shi Y, Tang KHD, Yapa PS (2022) Recent advances, current issues and future prospects of bioenergy production: A review. Sci Total Environ 810:152181. https://doi.org/10.1016/j.scitotenv.2021.152181

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Pawar A, Panwar NL, Salvi BL (2020) Comprehensive review on pyrolytic oil production, upgrading and its utilization. J Mater Cycles Waste Manag 22:1712–1722. https://doi.org/10.1007/s10163-020-01063-w

    Article  CAS  Google Scholar 

  8. Ore OT, Adebiyi FM (2021) A review on current trends and prospects in the pyrolysis of heavy oils. J Pet Explor Prod Technol 11:1521–1530. https://doi.org/10.1007/s13202-021-01099-0

    Article  CAS  Google Scholar 

  9. Singh VK, Soni AB, Kumar S, Singh RK (2014) Characterization of liquid product obtained by pyrolysis of cottonseed de-oiled cake. J Biobased Mater Bioenergy 8:1–6. https://doi.org/10.1166/jbmb.2014.1445

    Article  CAS  Google Scholar 

  10. Kumar R, Strezov V (2021) Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renew Sustain Ener Review 135:110152. https://doi.org/10.1016/j.rser.2020.110152

    Article  CAS  Google Scholar 

  11. Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers Biorefin 12:925–947. https://doi.org/10.1007/s13399-020-00870-3

    Article  CAS  Google Scholar 

  12. Mohan D, Pittman CUJ, Steele PH (2006) Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energ Fuel 20:848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  13. Opia AC, Hamid MKBA, Syahrullail S, Rahim ABA, Johnson CAN (2021) Biomass as a potential source of sustainable fuel, chemical and tribological materials – Overview. Mater Today: Proc 39:922–928. https://doi.org/10.1016/j.matpr.2020.04.045

    Article  CAS  Google Scholar 

  14. Das AK, Sahu SK, Panda AK (2022) Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review. Renew Sustain Energy Rev 161:12358. https://doi.org/10.1016/j.rser.2022.112358

    Article  CAS  Google Scholar 

  15. Sun X, Atiyeh HK, Li M, Chen Y (2020) Bio-char facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review. Bioresour Technol 295:122252. https://doi.org/10.1016/j.biortech.2019.122252

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Zhang XM, Fan D, Song YC (2014) A promising approach to co-processing calcium rich coal and an aqueous condensate from biomass carbonization. Fuel 133:82–88. https://doi.org/10.1016/j.fuel.2014.05.007

    Article  CAS  Google Scholar 

  17. Dou G, Goldfarb JL (2017) In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment. Fuel 195:273–283. https://doi.org/10.1016/j.fuel.2017.01.052

    Article  CAS  Google Scholar 

  18. Vamvuka D, Loukakou E, Sfakiotakis S, Petrakis E (2020) The impact of a combined pre-treatment on the combustion performance of various biomass wastes and their blends with lignite. Thermochim Acta 688:178599. https://doi.org/10.1016/j.tca.2020.178599

    Article  CAS  Google Scholar 

  19. Wang N, Qian K, Chen D, Zhao H, Yin L (2020) Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char. J Waste Manag 102:380–390. https://doi.org/10.1016/j.wasman.2019.10.056

    Article  CAS  Google Scholar 

  20. Adrados A, Lopez-Urionabarrenechea A, Solar J, Requies J, Marco ID, Cambra JF (2013) Upgrading of pyrolysis vapours from biomass carbonization. J Anal Appl Pyrolysis 103:293–299. https://doi.org/10.1016/j.jaap.2013.03.002

    Article  CAS  Google Scholar 

  21. Junior JAS, Menezes AL, Ataide CH (2019) Catalytic upgrading of fast hydropyrolysis vapors from industrial Kraft lignins using ZSM-5 zeolite and HY-340 niobic acid. J Anal Appl Pyrolysis 144:104720. https://doi.org/10.1016/j.jaap.2019.104720

    Article  CAS  Google Scholar 

  22. Xue J, Dou G, Ziade E, Goldfarb JL (2017) Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis. Energy Convers Manag 142:143–152. https://doi.org/10.1016/j.enconman.2017.03.001

    Article  CAS  Google Scholar 

  23. Wang K, Zheng Y, Zhu X, Brewer CE, Brown RC (2017) Ex-situ catalytic pyrolysis of wastewater sewage sludge – A micropyrolysis study. Bioresour Technol 232:229–234. https://doi.org/10.1016/j.biortech.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  24. Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB (2017) Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 231:124–128. https://doi.org/10.1016/j.biortech.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Larson RA, Runge T (2019) Impacts to hydrogen sulphide concentrations un biogas when poplar wood chips, steam treated wood chips, and bio-char are added to manure-based anaerobic digestion systems. Bioresour Technol 7:100232. https://doi.org/10.1016/j.biteb.2019.100232

    Article  Google Scholar 

  26. Arteaga-Pérez LE, Jiménez R, Grob N, Gómez O, Romero R, Ronsse F (2018) Catalytic upgrading of biomass-derived vapors on carbon aerogel-supported Ni: Effect of temperature, metal cluster size and catalyst-to-biomass ratio. Fuel Process Technol 178:251–261. https://doi.org/10.1016/j.fuproc.2018.05.036

    Article  CAS  Google Scholar 

  27. Larsson M, Görling M, Grönkvist S, Alvfors P (2013) Bio-methane upgrading of pyrolysis gas from charcoal production. Sustain Energy Technol Assess 3:66–73. https://doi.org/10.1016/j.seta.2013.07.001

    Article  Google Scholar 

  28. Suriapparao DV, Vinu R, Shukla A, Haldar S (2020) Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresour Technol 302:122775. https://doi.org/10.1016/j.biortech.2020.122775

    Article  CAS  PubMed  Google Scholar 

  29. Mahdi Z, Hanandeh AE, Yu QJ (2019) Preparation, characterization and application of surface modified bio-char from date seed for improved lead, copper, and nickel removal from aqueous solutions. J Environ Chem Eng 7:103379. https://doi.org/10.1016/j.jece.2019.103379

    Article  CAS  Google Scholar 

  30. Prabhahar R, Saravana S, Nagaraj P, Jeyasubramanian K (2020) Promotion of bio oil, H2 gas from the pyrolysis of rice husk assisted with nano silver catalyst and utilization of bio oil blend in CI engine. Int J Hydrogen Energ 45:16355–16371. https://doi.org/10.1016/j.ijhydene.2020.04.123

    Article  CAS  Google Scholar 

  31. Gascó G, Álvarez ML, Paz-Ferreiro J, Méndez A (2019) Combining phytoextraction by Brassica napus and bio-char amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 231:562–570. https://doi.org/10.1016/j.chemosphere.2019.05.168

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Li YH, Lin HT, **ao KL, Lasek J (2018) Combustion behavior of coal pallets blended with Miscanthus bio-char. Energy 163:180–190. https://doi.org/10.1016/j.energy.2018.08.117

    Article  CAS  Google Scholar 

  33. Vesyel T (2020) Potential of pistachio shell bio-char and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 245:125611. https://doi.org/10.1016/j.chemosphere.2019.125611

    Article  CAS  Google Scholar 

  34. Hussain R, Ravi K, Garg A (2020) Influence of bio-char on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures. Soil Till Res 204:104713. https://doi.org/10.1016/j.still.2020.104713

    Article  Google Scholar 

  35. Hagemann N, Schmidt HP, Kägi R, Böhler M, Sigmund G, Maccagnan A, McArdell CS, Bucheli TD (2020) Wood-based activated bio-char to eliminate organic micropollutants from biologically treated wastewater. Sci Total Environ 730:138417. https://doi.org/10.1016/j.scitotenv.2020.138417

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Kumar PA, Ray M, Chakraborty S (2009) Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate. Chem Eng 149:340–347. https://doi.org/10.1016/j.cej.2008.11.030

    Article  CAS  Google Scholar 

  37. Sharma M, Kumar A (2018) Promising biomass materials for biofuels in India’s context. Mater Lett 220:175–177. https://doi.org/10.1016/j.matlet.2018.03.034

    Article  CAS  Google Scholar 

  38. Hiloidhari M, Baruah DC, Kumari M, Kumari S, Thakur IS (2019) Prospect and potential of biomass power to mitigate climate change: A case study in India. J Clean Prod 220:931–944. https://doi.org/10.1016/j.jclepro.2019.02.194

    Article  Google Scholar 

  39. Mani S, Parthasarathy N (2007) Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. BIOMASS BIOENERG 31:284–290. https://doi.org/10.1016/j.biombioe.2006.08.006

    Article  Google Scholar 

  40. Joshi RK, Dhyani S (2019) Biomass, carbon density and diversity of tree species in tropical dry deciduous forests in Central India. Sheng Tai Xue Bao 39:289–299. https://doi.org/10.1016/j.chnaes.2018.09.009

    Article  Google Scholar 

  41. Thurber MC, Phadke H, Nagavarapu S, Shrimali G, Zerriffi H (2014) ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households. Energy Sustain Dev 19:138–150. https://doi.org/10.1016/j.esd.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ido AL, Luna, M.D.G.de, Ong, D.C., Capareda, S.C., (2019) Upgrading of Scenedesmus obliquus oil to high-quality liquid-phase biofuibarel by nickel-impregnated bio-char catalyst. J Clean Prod 209:1052–1060. https://doi.org/10.1016/j.jclepro.2018.10.028

    Article  CAS  Google Scholar 

  43. Schena T, Lazzari E, Primaz C, Krause LC, Machado ME, Caramao EB (2020) Upgrading of coconut fibers Bio-Oil: An investigation By Gc×Gc/Tofms. J Environ Chem Eng 8:103662. https://doi.org/10.1016/j.jece.2020.103662

    Article  CAS  Google Scholar 

  44. Zhang S, Zhang H, Liu X, Zhu S, Hu L, Zhang Q (2018) Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Process Technol 175:17–25. https://doi.org/10.1016/j.fuproc.2018.03.002

    Article  CAS  Google Scholar 

  45. Chen D, Cen K, **g X, Gao J, Li C, Ma Z (2017) An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour Technol 233:150–158. https://doi.org/10.1016/j.biortech.2017.02.120

    Article  CAS  PubMed  Google Scholar 

  46. Sun J, Wang K, Song Z, Lv Y, Chen S (2019) Enhancement of bio-oil quality: Metal-induced microwave-assisted pyrolysis coupled with ex-situ catalytic upgrading over HZSM-5. J Anal Appl Pyrolysis 137:276–284. https://doi.org/10.1016/j.jaap.2018.12.006

    Article  CAS  Google Scholar 

  47. **wei X, Ren T, Yan S, Zhiyu L, Enchen J (2018) Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction. Bioresour Technol 262:261–270. https://doi.org/10.1016/j.biortech.2018.04.037

    Article  CAS  Google Scholar 

  48. Yue X, Chen D, Luo J, **n Q, Huang Z (2020) Upgrading of reed pyrolysis oil by using its bio-char-based catalytic esterification and the influence of reed sources. Appl Energy 268:114970. https://doi.org/10.1016/j.apenergy.2020.114970

    Article  CAS  Google Scholar 

  49. Kumar R, Strezov V, Kan T, Weldekidan H, He J, Jahan S (2020) Investigating the Effect of Mono- and Bimetallic/Zeolite Catalysts on Hydrocarbon Production during Bio-oil Upgrading from Ex Situ Pyrolysis of Biomass. Energ Fuel 34:389–400. https://doi.org/10.1021/acs.energyfuels.9b02724

    Article  CAS  Google Scholar 

  50. Garedew M, Young-Farhat D, Jackson JE, Saffron CM (2019) Electrocatalytic Upgrading of Phenolic Compounds Observed after Lignin Pyrolysis. ACS Sustain Chem Eng 7:8375–8386. https://doi.org/10.1021/acssuschemeng.9b00019

    Article  CAS  Google Scholar 

  51. Vardon DR, Moser BR, Zheng W, Witkin K, Evangelista RL, Strathmann TJ, Kishore R, Brajendra KS (2013) Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Bio-char. ACS Sustain Chem Eng 1:1286–1294. https://doi.org/10.1021/sc400145w

    Article  CAS  Google Scholar 

  52. Gan YY, Ong HC, Show PL, Ling TC, Chen WH, Yu KL, Abdullah R (2018) Torrefaction of microalgal bio-char as potential coal fuel and application as bio-adsorbent. Energy Convers Manag 165:152–162. https://doi.org/10.1016/j.enconman.2018.03.046

    Article  CAS  Google Scholar 

  53. Mukundan S, Sriganesh G, Kumar P (2020) Upgrading Prosopis juliflora to biofuels via a two-step pyrolysis – Catalytic hydrodeoxygenation approach. Fuel 267:117320. https://doi.org/10.1016/j.fuel.2020.117320

    Article  CAS  Google Scholar 

  54. Tshikesho RS, Kumar A, Huhnke RL, Apblett A (2019) Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil. Bioresour Technol 285:121299. https://doi.org/10.1016/j.biortech.2019.03.138

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Wu Q, Duan D, Ruan R, Liu Y, Dai L, Zhou Y, Zhao Y, Zhang S, Zeng Z, Jiang L, Yu Z (2018) Ex-situ catalytic upgrading of vapors from fast microwave-assisted copyrolysis of Chromolaena odorata and soybean soapstock. Bioresour Technol 261:306–312. https://doi.org/10.1016/j.biortech.2018.04.042

    Article  CAS  PubMed  Google Scholar 

  56. Wilk M, Magdziarz A, Kalemba-Rec I, Szymańska-Chargot M (2020) Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy 202:117717. https://doi.org/10.1016/j.energy.2020.117717

    Article  CAS  Google Scholar 

  57. Stasi CD, Alvira D, Greco G, Gonzalez B, Manya JJ (2019) Physically activated wheat straw-derived bio-char for biomass pyrolysis vapors upgrading with high resistance against coke deactivation. Fuel 255:115807. https://doi.org/10.1016/j.fuel.2019.115807

    Article  CAS  Google Scholar 

  58. Zhu X, Luo Z, Diao R, Zhu X (2019) Combining torrefaction pretreatment and co-pyrolysis to upgrade bio-char derived from bio-oil distillation residue and walnut shell. Energy Convers Manag 199:111970. https://doi.org/10.1016/j.enconman.2019.111970

    Article  CAS  Google Scholar 

  59. Kim D, Lee K, Park KY (2016) Upgading of characterstics of bio-char from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100. https://doi.org/10.1016/j.jjec.2016.06.037

    Article  CAS  Google Scholar 

  60. Guo F, Peng K, Liang S, Jia X, Jiang X, Qian L (2019) Evaluation of the catalytic performance of different activated bio-char catalysts for removal of tar from biomass pyrolysis. Fuel 258:116204. https://doi.org/10.1016/j.fuel.2019.116204

    Article  CAS  Google Scholar 

  61. Sciarria TP, de Oliveira MAC, Mecheri B, D’Epifanio A, Goldfarb JL, Adani F (2020) Metal-free activated bio-char as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources 462:228183. https://doi.org/10.1016/j.jpowsour.2020.228183

    Article  CAS  Google Scholar 

  62. Pahla G, Ntuli F, Muzenda E (2018) Torrefaction of landfill food waste for possible application in biomass co-firing. J Waste Manag 71:512–520. https://doi.org/10.1016/j.wasman.2017.10.035

    Article  CAS  Google Scholar 

  63. Yan W, Perez S, Sheng K (2017) Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization. Fuel 196:473–480. https://doi.org/10.1016/j.fuel.2017.02.015

    Article  CAS  Google Scholar 

  64. ** H, Wang X, Gu Z, Polin J (2013) Carbon materials from high ash bio-char for supercapacitor and improvement of capacitance with HN O3 surface oxidation. J Power Sources 236:285. https://doi.org/10.1016/j.jpowsour.2013.02.088

    Article  CAS  Google Scholar 

  65. Liew RK, Nam WL, Chong MY, Phang XY, Su MH, Yek PNY, Ma NL, Cheng CK, chong C.T., Lam, S.S., (2018) Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality bio-char with potential multi-applications. Process Saf Environ 115:57–69. https://doi.org/10.1016/j.psep.2017.10.005

    Article  CAS  Google Scholar 

  66. Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel 89:3365–3372. https://doi.org/10.1016/j.fuel.2010.03.002

    Article  CAS  Google Scholar 

  67. Linger JG, Hobdey SE, Franden MA, Fulk EM, Beckham GT (2016) Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab Eng Commun 3:24–29. https://doi.org/10.1016/j.meteno.2016.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lian J, Perez MG, Coates R, Wuc H, Chen S (2012) Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol 118:177–186. https://doi.org/10.1016/j.biortech.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  69. Yin R, Liu R, Mei Y, Fei W, Sun X (2013) Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 112:96–104. https://doi.org/10.1016/j.fuel.2013.04.090

    Article  CAS  Google Scholar 

  70. Starace AK, Black BA, Lee DD, Palmiotti EC, Orton KA, Michener WE, Dam JT, Watson MJ, Beckham GT, Magrini KA, Mukarakate C (2017) Characterization and Catalytic Upgrading of Aqueous Stream Carbon from Catalytic Fast Pyrolysis of Biomass. Acs Sustain Chem Eng 5:11761–11769. https://doi.org/10.1021/acssuschemeng.7b03344

    Article  CAS  Google Scholar 

  71. Seo J, Kwon JS, Choo H, Cho JW, Jae J, Suh DJ, Kim S, Ha JM (2019) Production of deoxygenated high carbon number hydrocarbons from furan condensates: Hydrodeoxygenation of biomass-based oxygenates. Chem Eng 377:119985. https://doi.org/10.1016/j.cej.2018.09.146

    Article  CAS  Google Scholar 

  72. Schulzke T, Conrad S, Kaluza S, Loo TV (2017) Upgrading of fast pyrolysis condensates via esterification with higher alcohols. Biomass Bioenerg 103:11–20. https://doi.org/10.1016/j.biombioe.2017.05.010

    Article  CAS  Google Scholar 

  73. Gayubo AG, Aguayo AT, Atutxa A, Prieto R, Bilbao J (2004) Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons. Energy Fuels 18(6):1640–1647. https://doi.org/10.1021/ef040027u

    Article  CAS  Google Scholar 

  74. Wu C, Liu R (2010) Hydrogen Production from Steam Reforming of m-Cresol, a Model Compound Derived from Bio-oil: Green Process Evaluation Based on Liquid Condensate Recycling. Energy Fuels 24:5139–5147. https://doi.org/10.1021/ef100369g

    Article  CAS  Google Scholar 

  75. Barde M, Avery K, Edmunds CW, Labbé N, Auad ML (2019) Cross-Linked Acrylic Polymers from the Aqueous Phase of Biomass Pyrolysis Oil and Acrylated Epoxidized Soybean Oil. Acs Sustain Chem Eng 7:2216–2224. https://doi.org/10.1021/acssuschemeng.8b04897

    Article  CAS  Google Scholar 

Download references

Funding

No financial assistance was provided to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

Indra Mohan contributed to conceptualization, formal analysis, investigation, methodology, software, visualization, data curation, writing—original draft. Achyut K. Panda contributed to data curation, supervision, writing—review & editing. Vikranth Volli contributed to data curation, supervision, writing—review & editing. Sachin Kumar contributed to project administration, supervision, validation, resources, writing—review & editing.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

• Several techniques to upgrade the bio-oil, bio-char and aqueous condensate obtained from pyrolysis of biomass.

• Various applications of biomass pyrolysis products.

• Assessment of current status and probable future of biomass in India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, I., Panda, A.K., Volli, V. et al. An insight on upgrading of biomass pyrolysis products and utilization: Current status and future prospect of biomass in India. Biomass Conv. Bioref. 14, 6185–6203 (2024). https://doi.org/10.1007/s13399-022-02833-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02833-2

Keywords

Navigation