Log in

Catalytic supercritical water gasification of biomass waste using iron-doped alkaline earth catalysts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The objective of this study is to optimise the process of supercritical water gasification of rice husk biomass utilising a low-cost catalyst made from alkaline-earth materials. The interactions between catalyst loading and Fe content on gasification yield were investigated using response surface methodology. The catalyst characterisation findings revealed that the catalysts’ predominant reactive site is on iron oxide, calcium ferrite, and calcium oxide. Under all the conditions tested, the manufactured catalyst was highly active in promoting char gasification, gas volume, and gasification efficiency whilst the tar yield was substantially elevated. The maximum gasification efficiency of 69.57%, gas yield of 402.8 mL/g biomass, char yield 24.68 wt%, and gravimetric tar yield of 57.5 mg/g were obtained under the catalytic conditions of 15% catalyst loading with 5%Fe/limestone, 492 °C, 120-min residence time, and 9.5 wt% feed concentrations. Thus, the manufactured catalyst showed a potential for optimising gasification outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boot-Handford ME, Virmond E, Florin NH, Kandiyoti R, Fennell PS (2018) Simple pyrolysis experiments for the preliminary assessment of biomass feedstocks and low-cost tar cracking catalysts for downdraft gasification applications. Biomass Bioenergy 108:398–414. https://doi.org/10.1016/j.biombioe.2017.10.048

    Article  CAS  Google Scholar 

  2. Sansaniwal SK, Pal K, Rosen MA, Tyagi SK (2017) Recent advances in the development of biomass gasification technology: a comprehensive review 72:363–384. https://doi.org/10.1016/j.rser.2017.01.038

    Article  CAS  Google Scholar 

  3. Matin HHA, Hadiyanto HJJoES (2018) Technology, optimization of biogas production from rice husk waste by solid state anaerobic digestion (SSAD) using response surface methodology. J Environ Sci Technol 11:147–156

    Article  Google Scholar 

  4. Kumar M, OlajireOyedun A, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  5. Thomsen T, Hauggaard-Nielsen H, Bruun E, Ahrenfeldt J (2011) The potential of pyrolysis technology in climate change mitigation–influence of process design and–parameters, simulated in SuperPro Designer Software, in. Technical University of Denmark, Denmark

    Google Scholar 

  6. Johnsson F, Kjärstad J, Rootzén J (2019) The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy 19:258–274. https://doi.org/10.1080/14693062.2018.1483885

    Article  Google Scholar 

  7. Liu L, Huang Y, Liu C (2016) Prediction of rice husk gasification on fluidized bed gasifier based on ASPEN Plus. BioResources 11:2744–2755

    CAS  Google Scholar 

  8. Tursun Y, Xu S, Abulikemu A, Dilinuer T (2019) Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. Bioresour Technol 272:241–248. https://doi.org/10.1016/j.biortech.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  9. Guan G, Kaewpanha M, Hao X, Abudula A (2016) Catalytic steam reforming of biomass tar: prospects and challenges. Renew Sustain Energy Rev 58:450–461. https://doi.org/10.1016/j.rser.2015.12.316

    Article  CAS  Google Scholar 

  10. Cabuk B, Duman G, Yanik J, Olgun H (2019) Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.02.130

    Article  Google Scholar 

  11. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Jerry Antal Jr M (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–292. https://doi.org/10.1016/j.biombioe.2005.04.006

    Article  CAS  Google Scholar 

  12. Kruse A, Gawlik A (2003) Biomass conversion in water at 330–410 °C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42:267–279. https://doi.org/10.1021/ie0202773

    Article  CAS  Google Scholar 

  13. Yakaboylu O, Harinck J, Smit KG, De Jong W (2015) Supercritical water gasification of biomass: a literature and technology overview. Energies 8:859–894

    Article  CAS  Google Scholar 

  14. Hosseini SE, Abdul Wahid M, Jamil M, Azli AA, Misbah MF (2015) A review on biomass-based hydrogen production for renewable energy supply. Int J Energy Res 39:1597–1615. https://doi.org/10.1002/er.3381

    Article  CAS  Google Scholar 

  15. Ferreira-Pinto L, Silva Parizi MP, Carvalho PC, de Araújo AF, Zanette L Cardozo-Filho (2019) Experimental basic factors in the production of H2 via supercritical water gasification. Int J Hydrogen Energy 44:25365–25383. https://doi.org/10.1016/j.ijhydene.2019.08.023

    Article  CAS  Google Scholar 

  16. Bakari R, Kivevele T, Huang X, Jande YAC (2021) Sub- and supercritical water gasification of rice husk: parametric optimization using the I-optimality criterion. ACS Omega 6:12480–12499. https://doi.org/10.1021/acsomega.0c06318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Champagne P, Xu C (2011) Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification. Int J Hydrogen Energy 36:9591–9601. https://doi.org/10.1016/j.ijhydene.2011.05.077

    Article  CAS  Google Scholar 

  18. Wang C, Zhu C, Cao W, Wei W, ** H (2021) Catalytic mechanism study on the gasification of depolymerizing slag in supercritical water for hydrogen production. Int J Hydrogen Energy 46:2917–2926. https://doi.org/10.1016/j.ijhydene.2020.06.061

    Article  CAS  Google Scholar 

  19. Hervy M, Olcese R, Bettahar MM, Mallet M, Renard A, Maldonado L, Remy D, Mauviel G, Dufour A (2019) Evolution of dolomite composition and reactivity during biomass gasification. Appl Catal A 572:97–106. https://doi.org/10.1016/j.apcata.2018.12.014

    Article  CAS  Google Scholar 

  20. Liu L, Zhang Z, Das S, Kawi S (2019) Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl Catal B 250:250–272. https://doi.org/10.1016/j.apcatb.2019.03.039

    Article  CAS  Google Scholar 

  21. Kruse A, Meier D, Rimbrecht P, Schacht M (2000) Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39:4842–4848. https://doi.org/10.1021/ie0001570

    Article  CAS  Google Scholar 

  22. Xu ZR, Zhu W, Gong M, Zhang HW (2013) Direct gasification of dewatered sewage sludge in supercritical water. Part 1: Effects of alkali salts. Int J Hydrogen Energy 38:3963–3972. https://doi.org/10.1016/j.ijhydene.2013.01.164

    Article  CAS  Google Scholar 

  23. Guo Y, Wang S, Wang Y, Zhang J, Xu D, Gong Y (2012) Gasification of two and three-components mixture in supercritical water: influence of NaOH and initial reactants of acetic acid and phenol. Int J Hydrogen Energy 37:2278–2286. https://doi.org/10.1016/j.ijhydene.2011.10.074

    Article  CAS  Google Scholar 

  24. D’Jesús P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2006) Gasification of corn and clover grass in supercritical water. Fuel 85:1032–1038. https://doi.org/10.1016/j.fuel.2005.10.022

    Article  CAS  Google Scholar 

  25. Ramsurn H, Kumar S, Gupta RB (2011) Enhancement of biochar gasification in alkali hydrothermal medium by passivation of inorganic components using Ca(OH)2. Energy Fuels 25:2389–2398. https://doi.org/10.1021/ef200438b

    Article  CAS  Google Scholar 

  26. ** H, Lu Y, Guo L, Zhang X, Pei A (2014) Hydrogen production by supercritical water gasification of biomass with homogeneous and heterogeneous catalyst. Adv Condensed Matter Phys 2014:160565. https://doi.org/10.1155/2014/160565

    Article  CAS  Google Scholar 

  27. Nanda S, Dalai AK, Kozinski JA (2016) Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 95:378–387. https://doi.org/10.1016/j.biombioe.2016.05.023

    Article  CAS  Google Scholar 

  28. Kruse A (2008) Supercritical water gasification. Biofuels, Bioprod Biorefin 2:415–437. https://doi.org/10.1002/bbb.93

    Article  CAS  Google Scholar 

  29. Xu D, Wang S, Hu X, Chen C, Zhang Q, Gong Y (2009) Catalytic gasification of glycine and glycerol in supercritical water. Int J Hydrogen Energy 34:5357–5364. https://doi.org/10.1016/j.ijhydene.2008.08.055

    Article  CAS  Google Scholar 

  30. Kang K, Azargohar R, Dalai AK, Wang H (2017) Hydrogen generation via supercritical water gasification of lignin using Ni-Co/Mg-Al catalysts. Int J Energy Res 41:1835–1846. https://doi.org/10.1002/er.3739

    Article  CAS  Google Scholar 

  31. Anikeev V, Fan M (2014) Supercritical fluid technology for energy and environmental applications. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  32. Furusawa T, Sato T, Saito M, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) The evaluation of the stability of Ni/MgO catalysts for the gasification of lignin in supercritical water. Appl Catal A 327:300–310. https://doi.org/10.1016/j.apcata.2007.05.036

    Article  CAS  Google Scholar 

  33. Li S, Guo L (2019) Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass. Int J Hydrogen Energy 44:15842–15852. https://doi.org/10.1016/j.ijhydene.2018.08.205

    Article  CAS  Google Scholar 

  34. Peng W, Wang L, Mirzaee M, Ahmadi H, Esfahani M, Fremaux S (2017) Hydrogen and syngas production by catalytic biomass gasification. Energy Convers Manag 135:270–273. https://doi.org/10.1016/j.enconman.2016.12.056

    Article  CAS  Google Scholar 

  35. RS Tan, TA Tuan Abdullah, A Johari, K Md Isa 2020 Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review, Front Energy https://doi.org/10.1007/s11708-020-0800-2

  36. Shen Y, Yoshikawa K (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew Sustain Energy Rev 21:371–392. https://doi.org/10.1016/j.rser.2012.12.062

    Article  CAS  Google Scholar 

  37. Virginie M, Adánez J, Courson C, de Diego LF, García-Labiano F, Niznansky D, Kiennemann A, Gayán P, Abad A (2012) Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed. Appl Catal B 121–122:214–222. https://doi.org/10.1016/j.apcatb.2012.04.005

    Article  CAS  Google Scholar 

  38. Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B 117–118:330–338. https://doi.org/10.1016/j.apcatb.2012.01.035

    Article  CAS  Google Scholar 

  39. Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M (2009) Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal Today 146:192–195. https://doi.org/10.1016/j.cattod.2008.11.008

    Article  CAS  Google Scholar 

  40. Sato T, Osada M, Watanabe M, Shirai M, Arai K (2003) Gasification of alkylphenols with supported noble metal catalysts in supercritical water. Ind Eng Chem Res 42:4277–4282. https://doi.org/10.1021/ie030261s

    Article  CAS  Google Scholar 

  41. Huang J, Zhu C, Lian X, Feng H, Sun J, Wang L, ** H (2019) Catalytic supercritical water gasification of glucose with in-situ generated nickel nanoparticles for hydrogen production. Int J Hydrogen Energy 44:21020–21029. https://doi.org/10.1016/j.ijhydene.2019.04.184

    Article  CAS  Google Scholar 

  42. Gusta E, Dalai AK, Uddin MA, Sasaoka E (2009) Catalytic decomposition of biomass tars with dolomites. Energy Fuels 23:2264–2272. https://doi.org/10.1021/ef8009958

    Article  CAS  Google Scholar 

  43. Wang T, Chang J, Lv P, Zhu J (2005) Novel catalyst for cracking of biomass tar. Energy Fuels 19:22–27. https://doi.org/10.1021/ef030116r

    Article  CAS  Google Scholar 

  44. Orío A, Corella J, Narváez I (1997) Characterization and activity of different dolomites for hot gas cleaning in biomass gasification. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion: volume 1 /, vol 2. Springer, Netherlands, Dordrecht, pp 1144–1157

    Chapter  Google Scholar 

  45. Nordgreen T, Nemanova V, Engvall K, Sjöström K (2012) Iron-based materials as tar depletion catalysts in biomass gasification: dependency on oxygen potential. Fuel 95:71–78. https://doi.org/10.1016/j.fuel.2011.06.002

    Article  CAS  Google Scholar 

  46. Ramadhani B, Kivevele T, Kihedu JH, Jande YAC (2020) Catalytic tar conversion and the prospective use of iron-based catalyst in the future development of biomass gasification: a review. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00814-x

    Article  Google Scholar 

  47. Di Felice L, Courson C, Foscolo PU, Kiennemann A (2011) Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int J Hydrogen Energy 36:5296–5310. https://doi.org/10.1016/j.ijhydene.2011.02.008

    Article  CAS  Google Scholar 

  48. Behera SK, Meena H, Chakraborty S, Meikap BC (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28:621–629. https://doi.org/10.1016/j.ijmst.2018.04.014

    Article  CAS  Google Scholar 

  49. Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohamad Amran MS, Taufiq-Yap YH (2013) Preparation and characterization of Malaysian dolomites as a tar cracking catalyst in biomass gasification process. J Energy 2013:1–8. https://doi.org/10.1155/2013/791582

    Article  CAS  Google Scholar 

  50. Gunasekaran S, Anbalagan G (2007) Thermal decomposition of natural dolomite. Bull Mater Sci 30:339–344. https://doi.org/10.1007/s12034-007-0056-z

    Article  CAS  Google Scholar 

  51. Demirbas A (2007) Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers Manage 48:937–941. https://doi.org/10.1016/j.enconman.2006.08.004

    Article  CAS  Google Scholar 

  52. Aqliliriana C, Ernee N, Irmawati R (2015) Preparation and characterization of modified calcium oxide from natural sources and their application in the transesterification of palm oil. Int J Sci Technol Res 4:168–175

    Google Scholar 

  53. Sánchez-Jiménez PE, Valverde JM, Perejón A, de la Calle A, Medina S, Pérez-Maqueda LA (2016) Influence of ball milling on CaO crystal growth during limestone and dolomite calcination: effect on CO2 capture at calcium loo** conditions. Cryst Growth Des 16:7025–7036. https://doi.org/10.1021/acs.cgd.6b01228

    Article  CAS  Google Scholar 

  54. Ngamcharussrivichai C, Meechan W, Ketcong A, Kangwansaichon K, Butnark S (2011) Preparation of heterogeneous catalysts from limestone for transesterification of vegetable oils—effects of binder addition. J Ind Eng Chem 17:587–595. https://doi.org/10.1016/j.jiec.2011.05.001

    Article  CAS  Google Scholar 

  55. Yu QZ, Brage C, Nordgreen T, Sjöström K (2009) Effects of Chinese dolomites on tar cracking in gasification of birch. Fuel 88:1922–1926. https://doi.org/10.1016/j.fuel.2009.04.020

    Article  CAS  Google Scholar 

  56. Pérez P, Aznar PM, Caballero MA, Gil J, Martín JA, Corella J (1997) Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidized bed gasifier operating with steam−oxygen mixtures. Energy Fuels 11:1194–1203. https://doi.org/10.1021/ef970046m

    Article  Google Scholar 

  57. Silcox GD, Kramlich JC, Pershing DW (1989) A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles. Ind Eng Chem Res 28:155–160. https://doi.org/10.1021/ie00086a005

    Article  CAS  Google Scholar 

  58. Stanmore BR, Gilot P (2005) Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Process Technol 86:1707–1743. https://doi.org/10.1016/j.fuproc.2005.01.023

    Article  CAS  Google Scholar 

  59. Scherdel C, Reichenauer G, Wiener M (2010) Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater 132:572–575. https://doi.org/10.1016/j.micromeso.2010.03.034

    Article  CAS  Google Scholar 

  60. Huang B-S, Chen H-Y, Chuang K-H, Yang R-X, Wey M-Y (2012) Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst. Int J Hydrogen Energy 37:6511–6518. https://doi.org/10.1016/j.ijhydene.2012.01.071

    Article  CAS  Google Scholar 

  61. Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279C. https://doi.org/10.1149/1.2426447

    Article  Google Scholar 

  62. PA Webb, C Orr 1997 Analytical methods in fine particle technology, Micromeritics Instrument Corporation.

  63. Shen Y, Yoshikawa K (2014) Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind Eng Chem Res 53:10929–10942. https://doi.org/10.1021/ie501843y

    Article  CAS  Google Scholar 

  64. ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5:2874–2902. https://doi.org/10.3390/ma5122874

    Article  CAS  PubMed Central  ADS  Google Scholar 

  65. Ávila I, Crnkovic PM, Milioli FE, Luo KH (2012) Investigation of the pore blockage of a Brazilian dolomite during the sulfation reaction. Appl Surf Sci 258:3532–3539. https://doi.org/10.1016/j.apsusc.2011.11.108

    Article  CAS  ADS  Google Scholar 

  66. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  67. Fakher S, Imqam A (2019) A review of carbon dioxide adsorption to unconventional shale rocks methodology, measurement, and calculation. SN Appl Sci 2:5. https://doi.org/10.1007/s42452-019-1810-8

    Article  CAS  Google Scholar 

  68. Sing KS, Rouquerol F, Rouquerol J (1999) Adsorption by powders and porous solids: principles, methodology, and applications. Academic Press, London

    Google Scholar 

  69. Fermoso J, Gil MV, Arias B, Plaza MG, Pevida C, Pis JJ, Rubiera F (2010) Application of response surface methodology to assess the combined effect of operating variables on high-pressure coal gasification for H2-rich gas production. Int J Hydrogen Energy 35:1191–1204. https://doi.org/10.1016/j.ijhydene.2009.11.046

    Article  CAS  Google Scholar 

  70. Dritsa V, Rigas F, Doulia D, Avramides EJ, Hatzianestis I (2009) Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Water, Air, Soil Pollut 204:19. https://doi.org/10.1007/s11270-009-0022-z

    Article  CAS  ADS  Google Scholar 

  71. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol 99:4597–4602. https://doi.org/10.1016/j.biortech.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  72. M.J. Campbell, D. Machin, S.J. Walters 2010 Medical statistics: a textbook for the health sciences, John Wiley & Sons

  73. JM Chambers, WS Cleveland, B Kleiner, PA Tukey 1983 Graphical methods for data analysis. Wadsworth & Brooks, Cole Statistics/Probability Series

  74. Chen J, Fan Y, Zhao X, E J, Xu W, Zhang F, Liao G, Leng E, Liu S (2020) Experimental investigation on gasification characteristic of food waste using supercritical water for combustible gas production: exploring the way to complete gasification. Fuel 263:116735. https://doi.org/10.1016/j.fuel.2019.116735

    Article  CAS  Google Scholar 

  75. Madenoğlu TG, Kurt S, Sağlam M, Yüksel M, Gökkaya D, Ballice L (2012) Hydrogen production from some agricultural residues by catalytic subcritical and supercritical water gasification. J Supercrit Fluids 67:22–28. https://doi.org/10.1016/j.supflu.2012.02.031

    Article  CAS  Google Scholar 

  76. Osada M, Sato O, Watanabe M, Arai K, Shirai M (2006) Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuels 20:930–935. https://doi.org/10.1021/ef050398q

    Article  CAS  Google Scholar 

  77. Hu Y, Gong M, **ng X, Wang H, Zeng Y, Xu CC (2020) Supercritical water gasification of biomass model compounds: a review. Renew Sustain Energy Rev 118:109529. https://doi.org/10.1016/j.rser.2019.109529

    Article  CAS  Google Scholar 

  78. Florin NH, Harris AT (2008) Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63:287–316. https://doi.org/10.1016/j.ces.2007.09.011

    Article  CAS  Google Scholar 

  79. Matsuoka K, Shinbori T, Kuramoto K, Nanba T, Morita A, Hatano H, Suzuki Y (2006) Mechanism of woody biomass pyrolysis and gasification in a fluidized bed of porous alumina particles. Energy Fuels 20:1315–1320. https://doi.org/10.1021/ef0600210

    Article  CAS  Google Scholar 

  80. Gaurh P, Pramanik H (2018) A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene. Waste Manage (Oxford) 71:86–96. https://doi.org/10.1016/j.wasman.2017.10.053

    Article  CAS  Google Scholar 

  81. A Ariunaa D Otgonchuluun B Purevsuren D Ya 2018 Property of upgraded solid and liquid products from Baganuur lignite by thermal reaction with solvent Proceedings of the Mongolian Academy of Sciences 39–47https://doi.org/10.5564/pmas.v58i4.1048

  82. Wang H, Cao Y, Li D, Muhammad U, Li C, Li Z, Zhang S (2013) Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts. J Renew Sustain Energy 5:053114. https://doi.org/10.1063/1.4822050

    Article  CAS  Google Scholar 

  83. ** W, Shen D, Liu Q, **ao R (2016) Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS. Polym Degrad Stab 133:65–74. https://doi.org/10.1016/j.polymdegradstab.2016.08.001

    Article  CAS  Google Scholar 

  84. Uguru-Okorie DC, Ikpotokin I, Ajiboye MO, Ojediran ME (2018) FTIR investigation of the effect of storage on ogogoro-gasoline blend’s stability. IOP Conf Series: Mater Sci Eng 413:012073. https://doi.org/10.1088/1757-899x/413/1/012073

    Article  CAS  Google Scholar 

  85. Coronado MA, Montero G, García C, Valdez B, Ayala R, Pérez A (2017) Quality assessment of biodiesel blends proposed by the new Mexican policy framework. Energies 10:631. https://doi.org/10.3390/en10050631

    Article  CAS  Google Scholar 

  86. Guo X, Wang S, Wang Q, Guo Z, Luo Z (2011) Properties of bio-oil from fast pyrolysis of rice husk. Chin J Chem Eng 19:116–121. https://doi.org/10.1016/S1004-9541(09)60186-5

    Article  CAS  Google Scholar 

  87. Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A (2008) Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresour Technol 99:4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Water Infrastructure and Sustainable Energy Futures (WISE-Futures), the University of Dodoma (UDOM), and the Nelson Mandela African Institution of Science and Technology (NM-AIST) for their support.

Author information

Authors and Affiliations

Authors

Contributions

Ramadhani Bakari: conceptualisation, methodology, writing — original draft preparation; Thomas Kivevele: supervision, writing — reviewing and editing; **ao Huang: supercritical water reactor, supervision, writing — reviewing and editing; and Yusufu A. C. Jande: supervision, writing — reviewing and editing.

Corresponding authors

Correspondence to Ramadhani Bakari or Yusufu A. C. Jande.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3432 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakari, R., Kivevele, T., Huang, X. et al. Catalytic supercritical water gasification of biomass waste using iron-doped alkaline earth catalysts. Biomass Conv. Bioref. 14, 7487–7506 (2024). https://doi.org/10.1007/s13399-022-02800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02800-x

Keywords

Navigation