Log in

Eco-friendly Aqueous Binder-Based LiNi0.4Mn1.6O4 Cathode Enabling Stable Cycling Performance of High Voltage Lithium-Ion Batteries with Biomass-Derived Silica

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

High voltage cathode materials LiNixMn2−xO4 (x = 0.4; 0.5) have been attracting greater attention in develo** high energy density Li-ion battery technology for electrical vehicles and large-scale applications. The main challenge of high voltage cathodes is severe electrolyte decomposition leading to short cell cycle life. In addition, LiNi0.4Mn1.6O4 cathode material processed with polyvinylidene fluoride (PVdF) binder generally suffers an oxidation decomposition as well as cathode delamination from current collectors during cycling. Herein, we suggest using sodium carboxymethyl cellulose (CMC), lithium polyacrylic acid (LiPAA) as water-soluble binders for replacing conventional PVdF in cathode processing to demonstrate the effectiveness on long-cycling of half-cell Li || LiNi0.4Mn1.6O4, full-cell SiO2-graphite || LiNi0.4Mn1.6O4 and SiO2 || LiNi0.4Mn1.6O4. In half-cell, the cells with water-soluble binders-based cathode exhibited a higher discharge capacity than the one using PVdF binder (CMC—126.0 mAh/g; LiPAA—125.7 mAh/g; PVdF—117 mAh/g at C/5, respectively). CMC and LiPAA also improve retention capacity up to 90% after 500 cycles at C/3. Interestingly, LiPAA based electrode exhibits an excellent rate-capability with discharge capacity of 80 mAh/g at 8C. The stability of electrodes was also investigated by electrode chemical impedance spectroscopy (EIS) and Scanning electron microscope (SEM). In full-cell, CMC and LiPAA based cells showed effectiveness in decreasing transition metal dissolution and preventing the cathode degradation during long-cycling through its excellent capacity retention in 200 cycles at C/3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy, M.V., Mauger, A., Julien, C.M., et al.: Brief history of early lithium-battery development. Materials 13, 1884 (2020). https://doi.org/10.3390/ma13081884

    Article  CAS  Google Scholar 

  2. Li, Y., Li, X., Wang, Z., et al.: An Ostwald ripening route towards Ni-rich layered cathode material with cobalt-rich surface for lithium ion battery. Sci. China Mater. 61, 719–727 (2018). https://doi.org/10.1007/s40843-017-9162-3

    Article  CAS  Google Scholar 

  3. Noh, H.-J., Youn, S., Yoon, C.S., Sun, Y.-K.: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  4. Taskovic, T., Thompson, L.M., Eldesoky, A., et al.: Optimizing electrolyte additive loadings in NMC532/graphite cells: vinylene carbonate and ethylene sulfate. J. Electrochem. Soc. 168, 010514 (2021). https://doi.org/10.1149/1945-7111/abd833

    Article  CAS  Google Scholar 

  5. Wu, X., **a, S., Huang, Y., et al.: High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019). https://doi.org/10.1002/adfm.201903961

    Article  CAS  Google Scholar 

  6. Börner, M., Niehoff, P., Vortmann, B., et al.: Comparison of different synthesis methods for LiNi0.5Mn1.5O4-influence on battery cycling performance, degradation, and aging. Energy Technol. 4, 1631–1640 (2016). https://doi.org/10.1002/ente.201600383

    Article  CAS  Google Scholar 

  7. Dong, T., Zhang, H., Ma, Y., et al.: A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes. J. Mater. Chem. A 7, 24594–24601 (2019). https://doi.org/10.1039/C9TA08299A

    Article  CAS  Google Scholar 

  8. Qian, J., Wiener, C.G., Zhu, Y., Vogt, B.D.: Swelling and plasticization of polymeric binders by Li-containing carbonate electrolytes using quartz crystal microbalance with dissipation. Polymer 143, 237–244 (2018). https://doi.org/10.1016/j.polymer.2018.04.021

    Article  CAS  Google Scholar 

  9. Bigoni, F., De Giorgio, F., Soavi, F., Arbizzani, C.: Sodium alginate: a water-processable binder in high-voltage cathode formulations. J. Electrochem. Soc. 164, A6171–A6177 (2017). https://doi.org/10.1149/2.0281701jes

    Article  CAS  Google Scholar 

  10. Lestriez, B.: Functions of polymers in composite electrodes of lithium ion batteries. C. R. Chim. 13, 1341–1350 (2010). https://doi.org/10.1016/j.crci.2010.01.018

    Article  CAS  Google Scholar 

  11. Hitomi, S., Kubota, K., Horiba, T., et al.: Application of acrylic-rubber-based latex binder to high-voltage spinel electrodes of lithium-ion batteries. ChemElectroChem 6, 5070–5079 (2019). https://doi.org/10.1002/celc.201901227

    Article  CAS  Google Scholar 

  12. Isozumi, H., Kubota, K., Tatara, R., et al.: Impact of newly developed styrene–butadiene–rubber binder on the electrode performance of high-voltage LiNi0.5Mn1.5O4 electrode. ACS Appl. Energy Mater. 3, 7978–7987 (2020). https://doi.org/10.1021/acsaem.0c01334

    Article  CAS  Google Scholar 

  13. Zhong, H., He, J., Zhang, L.: Better cycle stability and rate capability of high-voltage LiNi0.5Mn1.5O4 cathode using water soluble binder. Mater. Res. Bull. 93, 194–200 (2017). https://doi.org/10.1016/j.materresbull.2017.04.036

    Article  CAS  Google Scholar 

  14. De Giorgio, F., Laszczynski, N., von Zamory, J., et al.: Graphite//LiNi0.5Mn1.5O4 cells based on environmentally friendly made-in-water electrodes. Chemsuschem 10, 379–386 (2017). https://doi.org/10.1002/cssc.201601249

    Article  CAS  Google Scholar 

  15. Pieczonka, N.P.W., Borgel, V., Ziv, B., et al.: Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater. 5, 1501008 (2015). https://doi.org/10.1002/aenm.201501008

    Article  CAS  Google Scholar 

  16. Al Ja’farawy, M.S., Hikmah, D.N., Riyadi, U., et al.: A review: the development of SiO2/C anode materials for lithium-ion batteries. J. Electron. Mater. 50, 6667–6687 (2021). https://doi.org/10.1007/s11664-021-09187-x

    Article  CAS  Google Scholar 

  17. Chen, Z., **ang, T., **ong, Q., et al.: Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries. Ionics 27, 1385–1392 (2021). https://doi.org/10.1007/s11581-021-03935-z

    Article  CAS  Google Scholar 

  18. Li, Y., Liu, L., Liu, X., et al.: Core–shell structured C/SiO2 composites derived from Si-rich biomass as anode materials for lithium-ion batteries. Ionics 28, 151–160 (2022). https://doi.org/10.1007/s11581-021-04335-z

    Article  CAS  Google Scholar 

  19. Osman, N.S., Sapawe, N.: Optimization of silica (SiO2) synthesis from acid leached oil palm frond ash (OPFA) through sol–gel method. Mater. Today Proc. 31, 232–236 (2020). https://doi.org/10.1016/j.matpr.2020.05.300

    Article  CAS  Google Scholar 

  20. Rafiee, E., Shahebrahimi, S., Feyzi, M., Shaterzadeh, M.: Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int. Nano Lett. 2, 29 (2012). https://doi.org/10.1186/2228-5326-2-29

    Article  Google Scholar 

  21. Farhan, R.Z., Ebrahim, S.E.: Preparing nanosilica particles from rice husk using precipitation method. Baghdad Sci. J. 18, 0494 (2021). https://doi.org/10.21123/bsj.2021.18.3.0494

    Article  Google Scholar 

  22. Li, S., Lan, L., Lu, L., et al.: Cerium doped LiNi0.5Mn1.5O4 composite with improved high temperature performance as a cathode material for Li-ion batteries. AIP Adv. 9, 25210 (2019). https://doi.org/10.1063/1.5082585

    Article  CAS  Google Scholar 

  23. Yi, T.-F., Mei, J., Zhu, Y.-R.: Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 316, 85–105 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.070

    Article  CAS  Google Scholar 

  24. Favors, Z., Wang, W., Bay, H.H., et al.: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 4, 4605 (2015). https://doi.org/10.1038/srep04605

    Article  CAS  Google Scholar 

  25. Baranchugov, V., Markevich, E., Pollak, E., et al.: Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 9, 796–800 (2007). https://doi.org/10.1016/j.elecom.2006.11.014

    Article  CAS  Google Scholar 

  26. Dawei, L., **aoxiao, Z., Yu, W., et al.: Adjusting ash content of char to enhance lithium storage performance of rice husk-based SiO2/C. J. Alloys Compd. 854, 156986 (2021). https://doi.org/10.1016/j.jallcom.2020.156986

    Article  CAS  Google Scholar 

  27. Guo, Y., Chen, X., Liu, W., et al.: Preparation of rice husk-based C/SiO2 composites and their performance as anode materials in lithium ion batteries. J. Electron. Mater. 49, 1081–1089 (2020). https://doi.org/10.1007/s11664-019-07785-4

    Article  CAS  Google Scholar 

  28. Sivonxay, E., Aykol, M., Persson, K.A.: The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim. Acta 331, 135344 (2020). https://doi.org/10.1016/j.electacta.2019.135344

    Article  CAS  Google Scholar 

  29. Zou, F., Manthiram, A.: A review of the design of advanced binders for high-performance batteries. Adv. Energy Mater. 10, 2002508 (2020). https://doi.org/10.1002/aenm.202002508

    Article  CAS  Google Scholar 

  30. Wang, Z., Dupré, N., Gaillot, A.-C., et al.: CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries. Electrochim. Acta 62, 77–83 (2012). https://doi.org/10.1016/j.electacta.2011.11.094

    Article  CAS  Google Scholar 

  31. Wang, F., Lin, Z., Liu, L., et al.: Does polarization increase lead to capacity fade? J. Electrochem. Soc. 167, 090549 (2020). https://doi.org/10.1149/1945-7111/ab956b

    Article  CAS  Google Scholar 

  32. Ogihara, N., Itou, Y., Sasaki, T., Takeuchi, Y.: Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015). https://doi.org/10.1021/jp512564f

    Article  CAS  Google Scholar 

  33. Gaberšček, M.: Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun. 12, 6513 (2021). https://doi.org/10.1038/s41467-021-26894-5

    Article  CAS  Google Scholar 

  34. Kasireddy, S.R., Gangaja, B., Nair, S.V., Santhanagopalan, D.: Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochim. Acta 250, 359–367 (2017). https://doi.org/10.1016/j.electacta.2017.08.054

    Article  CAS  Google Scholar 

  35. Zhan, C., Wu, T., Lu, J., Amine, K.: Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ. Sci. 11, 243–257 (2018). https://doi.org/10.1039/C7EE03122J

    Article  CAS  Google Scholar 

  36. Pieczonka, N.P.W., Kim, J.-H., Halalay, I.C., et al.: The effect of crystal structure, chemical composition, and binder on the full-cell performance of high voltage spinel positive electrodes for lithium-ion batteries. ECS Meeting Abstracts MA2013-02:1177–1177. https://doi.org/10.1149/MA2013-02/14/1177 (2013)

Download references

Acknowledgements

This work was supported by the Department of Science and Technology in Ho Chi Minh City (DOST) under contract No. 54/2020/HĐ-QPTKHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phung My Loan Le.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.T.B., Nguyen, H.V., Tran, N.T. et al. Eco-friendly Aqueous Binder-Based LiNi0.4Mn1.6O4 Cathode Enabling Stable Cycling Performance of High Voltage Lithium-Ion Batteries with Biomass-Derived Silica. Electron. Mater. Lett. 19, 239–250 (2023). https://doi.org/10.1007/s13391-022-00393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00393-1

Keywords

Navigation