Log in

Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

SiO2-based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO2 for Li+ storage. So, highly active SiO2@C nanofibers were prepared by electrospinning. Using X-ray diffraction (XRD), its amorphous characteristics were revealed. The results from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that it was a nanofiber structure. As an anode for LIBs, the SiO2@C nanofibrous electrode showed the discharge capacities of 675 and 188 mAh g−1 at 1 A g−1 (1000the cycle) and 10 A g−1 (5000th cycle), respectively. Even at 50 A g−1, it still maintained 88 mA h g−1 at 60,000 cycles, showing excellent stability and high rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tian W, Wang L, Huo K, He X (2019) Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J Power Sources 430:60–66

    Article  CAS  Google Scholar 

  2. Shan H-J, Yen K, Wu Q, Lin M, Zhou X, Guo D, Wu H, Zhang G, Wu H-LW (2017) Functionalized fullerenes for highly efficient lithium ion storage: structure-property-performance correlation with energy implications. Nano Energy 40:327–335

    Article  CAS  Google Scholar 

  3. Luo Z, Liu C, Tian Y, Zhang Y, Jiang Y, Hu J, Hou H, Zou G, Ji X (2020) Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater 27:124–132

    Article  Google Scholar 

  4. Zhang Y, Mu Z, Lai J, Chao Y, Yang Y, Zhou P, Li Y, Yang W, **a Z, Guo S (2019) MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13:2167–2175

    PubMed  CAS  Google Scholar 

  5. Yun Q, Qin X, He Y, Lv W, Kaneti Y, Li B, Yang Q, Kang F (2016) Micron-sized spherical Si/C hybrids assembled via water/oil system for high-performance lithium ion battery. Electrochim Acta 211:982–988

    Article  CAS  Google Scholar 

  6. Su X, Wu Q, Li J, **ao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Siliconbased nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4:1300882

    Article  Google Scholar 

  7. Yi R, Dai F, Gordin ML, Chen S, Wang D (2013) Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater 3:295–300

    Article  CAS  Google Scholar 

  8. Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F (2013) Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60:558–561

    Article  CAS  Google Scholar 

  9. Tang Y, Liu C, Xu J, Zhu X, Wei L, Zhou L, He W, Yang LM (2018) Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv Funct Mater 28:1704561

    Article  Google Scholar 

  10. Chang W-S, Park C-M, Kim J-H, Kim Y-U, Jeong G, Sohn H-J (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5:6895–6899

    Article  CAS  Google Scholar 

  11. Gao S, Sinha L, Fleming, Zhou O (2001) Alloy formation in nanostructured silicon. Adv Mater 13:816–819

    Article  CAS  Google Scholar 

  12. Ma X, Wei Z, Han H, Wang X, Cui K, Yang L (2017) Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium-ion batteries. Chem Eng J 323:252–259

    Article  CAS  Google Scholar 

  13. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx template by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274

    Article  CAS  Google Scholar 

  15. Chen Z, Yin D, Zhang M (2018) Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14:1703818

    Article  Google Scholar 

  16. **ong J, Li X, Huang J, Gao X, Chen Z, Liu J, Li H, Kang B, Yao W, Zhu Y (2020) CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B Environ 266:118602

    Article  CAS  Google Scholar 

  17. Wu X, Shi Z-q, Wang C-y, ** J (2015) Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. J Electroanal Chem 746:62–67

    Article  CAS  Google Scholar 

  18. Yang X, Huang H, Li Z, Zhong M, Zhang G, Wu D (2014) Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure. Carbon 77:275–280

    Article  CAS  Google Scholar 

  19. Ren Y, Yang B, Wei H, Ding J (2016) Electrospun SiO2/C composite fibers as durable anode materials for lithium ion batteries. Solid State Ionics 292:27–31

    Article  CAS  Google Scholar 

  20. Zhao Y, Liu Z, Zhang Y, Mentbayeva A, Wang X, Maximov MY, Liu B, Bakenov Z, Yin F (2017) Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanoscale Res Lett 12:459

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeng LX, Liu RP, Han L, Luo FQ, Chen X, Wang JB, Qian QR, Chen QH, Wei MD (2018) Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chem Eur J 24:4841–4848

    Article  PubMed  CAS  Google Scholar 

  22. Jia K, Wang JH (2017) Filter paper derived nanofibrous silica-carbon composite as anodic material with enhanced lithium storage performance. Chem Eng J 317:673–686

    Article  CAS  Google Scholar 

  23. Zou K, Cai P, Cao X, Zou G, Hou H, Ji X (2020) Carbon materials for high-performance lithium-ion capacitor. Curr Opin Electrochem 21:31–39

    Article  CAS  Google Scholar 

  24. Chen Z, Zhu DJ, Li JL, Liang DN, Liu MQ, Hu ZH, Li XB, Feng ZJ, Huang JT (2019) Porous functionalized carbon as anode for a long cycling of sodium-ion batteries. Ionics 25:4517–4522

    Article  CAS  Google Scholar 

  25. Gupta N, Kumar K, Panda V, Kanan S, Joshi IV-F (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci Rep 7:45030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xu Y, Zhang C, Zhou M, Fu Q, Zhao C, Wu M, Lei Y (2018) Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 9:1720

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding K (2018) Study on the combustion products of dimethyl silicone oil as anode materials for lithium ion batteries. Int J Electrochem Sci 13:10859–10872

    Article  CAS  Google Scholar 

  28. **a H, Yin Z, Zheng F, Zhang Y (2017) Facile synthesis of SiO2/C composites as anode materials for lithium-ion batteries. Mater Lett 205:83–86

    Article  CAS  Google Scholar 

  29. Zhou K, Kang M, He X, Hong Z, Huang Z, Wei M (2017) A multi-functional gum Arabic binder for NiFe2O4 nanotube anodes enabling excellent Li/Na-ion storage performance. J Mater Chem A 5:18138–18147

    Article  CAS  Google Scholar 

  30. Wu Q, Zhu R, Chen N, Chen Y, Chen LL (2015) Ring-chain synergy in ionic liquid electrolytes for lithium batteries. Chem Sci 6:7274–7283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Deng J, Yu X, He Y, Li B, Yang Q, Kang F (2017) A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater 6:61–69

    Article  Google Scholar 

  32. Shuai H, Li J, Hong W, Gao X, Zou G, Hu J, Hou H, Ji X, Liu H (2019) Electrochemically modulated LiNi1/3Mn1/3Co1/3O2 cathodes for lithium-ion batteries. Small Methods 3:1900065

    Article  Google Scholar 

  33. Feng Y, Liu X, Liu L, Zhang Z, Teng Y, Yu D, Sui J, Wang X (2018) SiO2/C composite derived from rice husks with enhanced capacity as anodes for lithium-ion batteries. ChemistrySelect 3:10338–10344

    Article  CAS  Google Scholar 

  34. Zeng L, Liu R, Han L, Luo F, Chen X, Wang J, Qian Q, Chen Q, Wei M (2018) Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chem Eur J 244:841–4848

    Google Scholar 

  35. Wang L, Liu H, Zhao J, Zhang X, Zhang C, Zhang G, Liu Q, Duan H (2020) Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors. Chem Eng J 382:122979

    Article  CAS  Google Scholar 

  36. Son Y, Sim S, Ma H, Choi M, Son Y, Park N, Cho J, Park M (2018) Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv Mater 30:1705430

    Article  Google Scholar 

  37. Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875

    Article  CAS  Google Scholar 

  38. Li M, Li J, Li K, Zhao Y, Zhang Y, Gosselink D, Chen P (2013) SiO2/Cu/polyacrylonitrile-C composite as anode material in lithium ion batteries. J Power Sources 240:659–666

    Article  CAS  Google Scholar 

  39. Gu Z, **a X, Liu C, Hu X, Chen Y, Wang Z, Liu H (2018) Yolk structure of porous C/SiO2/C composites as anode for lithium-ion batteries with quickly activated SiO2. J Alloys Compd 75:7265–7272

    Google Scholar 

  40. Wang Y, Zhou L, Liang C, Zhang J, Huang H, Gan Y, **a Y, Tao X, Zhang W (2019) Sand/carbon composites as low-cost lithium storage materials with superior electrochemical performance. New J Chem 43:4123–4129

    Article  CAS  Google Scholar 

  41. Wang H, Wu P, Qu M, Si L, Tang Y, Zhou Y, Lu T (2015) Highly reversible and fast lithium storage in graphene-wrapped SiO2 nanotube network. ChemElectroChem 2:508–511

    Article  CAS  Google Scholar 

  42. Li M, Zeng Y, Ren Y, Zeng C, Gu J, Feng X, He H (2015) Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres. J Power Sources 288:53–61

    Article  CAS  Google Scholar 

  43. Jayabalan AD, Din MMU, Indu MS, Karthik K, Ragupathi V, Nagarajan GS, Panigrahi P, Murugan R (2019) Electrospun 3D CNF-SiO2 fabricated using non-biodegradable silica gel as prospective anode for lithium-ion batteries. Ionics 25:5305–5313

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (Grant Nos. 51862024, 11872207), Starting Foundation Nanchang Hangkong University and Project (EA201901417), and China Postdoctoral Science Foundation (2020M671477).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ng Shen or Juntong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., **ang, T., **ong, Q. et al. Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries. Ionics 27, 1385–1392 (2021). https://doi.org/10.1007/s11581-021-03935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03935-z

Keywords

Navigation