Log in

Hybrid B-CSM Composites Strengthening Approach for Improved Stress–Strain Behavior of Concrete Columns and Development of Analytical Models

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The brittle behavior of concrete under axial compressive loading has been a persistent issue. This study investigates the effectiveness of a hybrid Basalt-E-glass confinement (B-CSM) in improving the compressive behavior of concrete. The B-CSM confinement demonstrates a considerable improvement in ultimate strength and strain capacity by over 250 and 500%, respectively, making it a favorable solution for enhancing the ductility of concrete structures. Specimens at 18.43 MPa unconfined strength, confined with 3-layer B-CSM, demonstrated a 258% ultimate strength enhancement. For 24.43 MPa specimens, the same confinement resulted in a 207% increase in ultimate strength. Specimens with an initial ultimate strain of 18.43 MPa, when confined with 3-layers, showed a notable 516% increase. Likewise, for 24.43 MPa specimens, the same confinement led to a significant 395% improvement in ultimate strain. The use of B-CSM confinement is also effective in terms of cost compared to synthetic fiber-reinforced polymer jackets, and its availability is widespread. Existing analytical models for fiber-reinforced polymer confinement were evaluated, and it was found that these models could not predict the ultimate strength and strain of B-CSM-confined concrete. Therefore, this study proposes a unique regression-based approach for predicting the various points of the compressive stress vs. strain curve of B-CSM confinement. These points are then used to trace the complete stress vs. strain curve, which matches closely with experimental results. This work contributes to the development of new design recommendations for B-CSM confined concrete structures, which can enhance the performance of concrete structures and potentially reduce construction costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hameed, A.; Rasool, A.M.; Ibrahim, Y.E.; Afzal, M.F.U.D.; Qazi, A.U.; Hameed, I.: Utilization of fly ash as a viscosity-modifying agent to produce cost-effective self-compacting concrete: a sustainable solution. Sustainability 14, 11559 (2022). https://doi.org/10.3390/SU141811559

    Article  Google Scholar 

  2. Lin, H.J.; Liao, C.I.: Compressive strength of reinforced concrete column confined by composite material. Compos. Struct. 65, 239–250 (2004). https://doi.org/10.1016/J.COMPSTRUCT.2003.11.001

    Article  Google Scholar 

  3. Feng, C.; Yu, F.; Fang, Y.: Mechanical behavior of PVC tube confined concrete and PVC-FRP confined concrete: a review. Structures 31, 613–635 (2021). https://doi.org/10.1016/J.ISTRUC.2021.01.093

    Article  Google Scholar 

  4. Tang, Z.; Li, W.; Tam, V.W.Y.; Yan, L.: Mechanical performance of CFRP-confined sustainable geopolymeric recycled concrete under axial compression. Eng. Struct. 224, 111246 (2020). https://doi.org/10.1016/J.ENGSTRUCT.2020.111246

    Article  Google Scholar 

  5. Júlio, E.N.B.S.; Branco, F.A.B.: Reinforced concrete jacketing-interface influence on cyclic loading response. Struct. J. 105, 471–477 (2008). https://doi.org/10.14359/19861

    Article  Google Scholar 

  6. Vandoros, K.G.; Dritsos, S.E.: Concrete jacket construction detail effectiveness when strengthening RC columns. Constr. Build. Mater. 22, 264–276 (2008). https://doi.org/10.1016/J.CONBUILDMAT.2006.08.019

    Article  Google Scholar 

  7. Chai, Y.H.; Priestley, M.J.N.; Seible, F.: Analytical model for steel jacketed RC circular bridge columns. J. Struct. Eng. 120, 2358–2376 (1994). https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2358)

    Article  Google Scholar 

  8. Gong, J.C.; Malvern, L.E.: Passively confined tests of axial dynamic compressive strength of concrete. Exp. Mech. 30, 55–59 (1990). https://doi.org/10.1007/BF02322703/METRICS

    Article  Google Scholar 

  9. Li, Y.F.; Chen, S.H.; Chang, K.C.; Liu, K.Y.: A constitutive model of concrete confined by steel reinforcements and steel jackets. Can. J. Civ. Eng. 32, 279–288 (2011). https://doi.org/10.1139/L04-093

    Article  Google Scholar 

  10. Almusallam, T.H.: Behavior of normal and high-strength concrete cylinders confined with e-glass/epoxy composite laminates. Compos. B Eng. 38, 629–639 (2007). https://doi.org/10.1016/J.COMPOSITESB.2006.06.021

    Article  Google Scholar 

  11. Li, J.; Gong, J.; Wang, L.: Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Constr. Build. Mater. 23, 2653–2663 (2009). https://doi.org/10.1016/J.CONBUILDMAT.2009.01.003

    Article  Google Scholar 

  12. Juntanalikit, P.; Jirawattanasomkul, T.; Pimanmas, A.: Experimental and numerical study of strengthening non-ductile RC columns with and without lap splice by carbon fiber reinforced polymer (CFRP) jacketing. Eng. Struct. 125, 400–418 (2016). https://doi.org/10.1016/J.ENGSTRUCT.2016.07.019

    Article  Google Scholar 

  13. Raza, S.; Khan, M.K.I.; Menegon, S.J.; Tsang, H.H.; Wilson, J.L.: Strengthening and repair of reinforced concrete columns by jacketing: state-of-the-art review. Sustainability 11, 3208 (2019). https://doi.org/10.3390/SU11113208

    Article  Google Scholar 

  14. Hamad, B.S.; Rteil, A.A.; Salwan, B.R.; Soudki, K.A.: Behavior of bond-critical regions wrapped with fiber-reinforced polymer sheets in normal and high-strength concrete. J. Compos. Constr. 8, 248–257 (2004). https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(248)

    Article  Google Scholar 

  15. Al-Obaidi, S.; Saeed, Y.M.; Rad, F.N.: Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking. J. Build. Eng. (2020). https://doi.org/10.1016/J.JOBE.2020.101422

    Article  Google Scholar 

  16. **ao, Y.; Wu, H.: Compressive behavior of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. 12, 139–146 (2000). https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)

    Article  Google Scholar 

  17. Mirmiran, A.; Shahawy, M.: Behavior of concrete columns confined by fiber composites. J. Struct. Eng. 123, 583–590 (1997). https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)

    Article  Google Scholar 

  18. Nanni, A.; Bradford, N.M.: FRP jacketed concrete under uniaxial compression. Constr. Build. Mater. 9, 115–124 (1995). https://doi.org/10.1016/0950-0618(95)00004-Y

    Article  Google Scholar 

  19. Lam, L.; Huang, L.; **e, J.H.; Chen, J.F.: Compressive behavior of ultra-high performance concrete confined with FRP. Compos. Struct. 274, 114321 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.114321

    Article  Google Scholar 

  20. Zeng, J.J.; Duan, Z.J.; Gao, W.Y.; Bai, Y.L.; Ouyang, L.J.: Compressive behavior of FRP-wrapped seawater sea-sand concrete with a square cross-section. Constr. Build. Mater. 262, 120881 (2020). https://doi.org/10.1016/J.CONBUILDMAT.2020.120881

    Article  Google Scholar 

  21. Ilki, A.; Peker, O.; Karamuk, E.; Demir, C.; Kumbasar, N.: FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J. Mater. Civ. Eng. 20, 169–188 (2008). https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169)

    Article  Google Scholar 

  22. Iskander, M.G.; Hassan, M.: State of the practice review in FRP composite piling. J. Compos. Constr. 2, 116–120 (1998). https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(116)

    Article  Google Scholar 

  23. Wang, X.; Wu, Z.: Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges. Compos. Struct. 92, 2582–2590 (2010). https://doi.org/10.1016/J.COMPSTRUCT.2010.01.023

    Article  Google Scholar 

  24. Chaiyasarn, K.; Hussain, Q.; Joyklad, P.; Rodsin, K.: New hybrid basalt/e-glass FRP jacketing for enhanced confinement of recycled aggregate concrete with clay brick aggregate. Case Stud. Constr. Mater. 14, e00507 (2021). https://doi.org/10.1016/J.CSCM.2021.E00507

    Article  Google Scholar 

  25. Tarvainen, K.; Jolanki, R.; Forsman-Grönholm, L.; Estlander, T.; Pfäffli, P.; Juntunen, J.; Kanerva, L.: Exposure, skin protection and occupational skin diseases in the glass-fibre-reinforced plastics industry. Contact Dermat. 29, 119–127 (1993). https://doi.org/10.1111/J.1600-0536.1993.TB03508.X

    Article  Google Scholar 

  26. Tarvainen, K.; Jolanki, R.; Estlander, T.: Occupational contact allergy to unsaturated polyester resin cements. Contact Dermat. 28, 220–224 (1993). https://doi.org/10.1111/J.1600-0536.1993.TB03406.X

    Article  Google Scholar 

  27. Sen, T.; Jagannatha Reddy, H.N.: Efficacy of bio derived jute FRP composite based technique for shear strength retrofitting of reinforced concrete beams and its comparative analysis with carbon and glass FRP shear retrofitting schemes. Sustain. Cities Soc. 13, 105–124 (2014). https://doi.org/10.1016/J.SCS.2014.04.010

    Article  Google Scholar 

  28. Rousakis, T.C.: Inherent seismic resilience of RC columns externally confined with nonbonded composite ropes. Compos. B Eng. 135, 142–148 (2018). https://doi.org/10.1016/J.COMPOSITESB.2017.10.023

    Article  Google Scholar 

  29. Hussain, Q.; Ruangrassamee, A.; Tangtermsirikul, S.; Joyklad, P.: Behavior of concrete confined with epoxy bonded fiber ropes under axial load. Constr. Build Mater. (2020). https://doi.org/10.1016/J.CONBUILDMAT.2020.120093

    Article  Google Scholar 

  30. Tolga Cogurcu, M.: Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra-high performance concrete. Case Stud. Constr. Mater. 16, e00970 (2022). https://doi.org/10.1016/J.CSCM.2022.E00970

    Article  Google Scholar 

  31. Ribeiro, F.; Sena-Cruz, J.; Branco, F.G.; Júlio, E.: Hybrid FRP jacketing for enhanced confinement of circular concrete columns in compression. Constr. Build. Mater. 184, 681–704 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.06.229

    Article  Google Scholar 

  32. Wang, B.; Bachtiar, E.V.; Yan, L.; Kasal, B.; Fiore, V.: Flax, basalt, e-glass FRP and their hybrid FRP strengthened wood beams: an experimental study. Polymers 11, 1255 (2019). https://doi.org/10.3390/POLYM11081255

    Article  Google Scholar 

  33. Wu, G.; Wu, Z.S.; Lu, Z.T.; Ando, Y.B.: Structural performance of concrete confined with hybrid FRP composites. J. Reinf. Plast. Compos. 27, 1323–1348 (2008). https://doi.org/10.1177/0731684407084989

    Article  Google Scholar 

  34. Shah, I.; Li, J.; Yang, S.; Zhang, Y.; Anwar, A.: Experimental investigation on the mechanical properties of natural fiber reinforced concrete. J. Renew. Mater. 10, 1307–1320 (2021). https://doi.org/10.32604/JRM.2022.017513

    Article  Google Scholar 

  35. Wahab, N.; Srinophakun, P.; Hussain, Q.; Chaimahawan, P.: Performance of concrete confined with a jute-polyester hybrid fiber reinforced polymer composite: a novel strengthening technique. Fibers 7, 72 (2019). https://doi.org/10.3390/FIB7080072

    Article  Google Scholar 

  36. **a, Y.; **an, G.: Hybrid basalt/flax fibers reinforced polymer composites and their use in confinement of concrete cylinders. Adv. Struct. Eng. 23, 941–953 (2019). https://doi.org/10.1177/1369433219886084

    Article  Google Scholar 

  37. Abd El-Baky, M.A.; Attia, M.A.; Abdelhaleem, M.M.; Hassan, M.A.: Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties. J Nat. Fibers 19, 954–968 (2020). https://doi.org/10.1080/15440478.2020.1775750

    Article  Google Scholar 

  38. ASTM C94/C94M-22a: Standard specification for ready-mixed concrete (2022)

  39. Gao, C.; Huang, L.; Yan, L.; Kasal, B.; Li, W.: Behavior of glass and carbon frp tube encased recycled aggregate concrete with recycled clay brick aggregate. Compos. Struct. 155, 245–254 (2016). https://doi.org/10.1016/J.COMPSTRUCT.2016.08.021

    Article  Google Scholar 

  40. Yan, B.; Huang, L.; Yan, L.; Gao, C.; Kasal, B.: Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate. Constr. Build. Mater. 136, 265–276 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.01.046

    Article  Google Scholar 

  41. Elsanadedy, H.M.; Al-Salloum, Y.A.; Alsayed, S.H.; Iqbal, R.A.: Experimental and numerical investigation of size effects in FRP-wrapped concrete columns. Constr. Build. Mater. 29, 56–72 (2012). https://doi.org/10.1016/J.CONBUILDMAT.2011.10.025

    Article  Google Scholar 

  42. Wang, Y.; Wu, H.: Size effect of concrete short columns confined with aramid FRP jackets. J. Compos. Constr. 15, 535–544 (2010). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178

    Article  Google Scholar 

  43. Mirmiran, A.; Shahawy, M.; Samaan, M.; Echary, H.E.; Mastrapa, J.C.; Pico, O.: Effect of column parameters on FRP-confined concrete. J. Compos. Constr. 2, 175–185 (1998). https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)

    Article  Google Scholar 

  44. Jamatia, R.; Deb, A.: Size effect in FRP-confined concrete under axial compression. J. Compos. Constr. 21, 04017045 (2017). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000825

    Article  Google Scholar 

  45. Ahmed, S.K.: Ultimate strength and axial strain of FRP strengthened circular concrete columns. Cogent Eng. 5, 1–21 (2018). https://doi.org/10.1080/23311916.2018.1501971

    Article  Google Scholar 

  46. Wang, W.; Wu, C.; Liu, Z.; Si, H.: Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined With FRP. Compos. Struct. 204, 419–437 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.07.102

    Article  Google Scholar 

  47. Shehata, I.A.E.M.; Carneiro, L.A.V.; Shehata, L.C.D.: Strength of short concrete columns confined with CFRP sheets. Mater. Struct.. 35, 50–58 (2002). https://doi.org/10.1007/BF02482090

    Article  Google Scholar 

  48. Pimanmas, A.; Hussain, Q.; Panyasirikhunawut, A.; Rattanapitikon, W.: Axial strength and deformability of concrete confined with natural fibre-reinforced polymers. Mag. Concr. Res. 71, 55–70 (2018). https://doi.org/10.1680/jmacr.17.00312

    Article  Google Scholar 

  49. Richart, F.E.; Brandtzaeg, A.; Brown, R.L.: A study of the failure of concrete under combined compressive stresses. In: Bulletin no. 185, University of Illinois, Engineering Experiment Station, Champaign (1928)

  50. Joyklad, P.; Saingam, P.; Ali, N.; Ejaz, A.; Hussain, Q.; Khan, K.; Chaiyasarn, K.: Low-cost fiber chopped strand mat composites for compressive stress and strain enhancement of concrete made with brick waste aggregates. Polymers 14, 4714 (2022). https://doi.org/10.3390/POLYM14214714

    Article  Google Scholar 

  51. Yooprasertchai, E.; Ejaz, A.; Saingam, P.; Ng, A.W.M.; Joyklad, P.: Development of stress-strain models for concrete columns externally strengthened with steel clamps. Constr. Build. Mater. 377, 131155 (2023). https://doi.org/10.1016/J.CONBUILDMAT.2023.131155

    Article  Google Scholar 

  52. Saingam, P.; Ejaz, A.; Ali, N.; Nawaz, A.; Hussain, Q.; Joyklad, P.: Prediction of stress & ndash; strain curves for HFRP composite confined brick aggregate concrete under axial load. Polymers 15, 844 (2023). https://doi.org/10.3390/POLYM15040844

    Article  Google Scholar 

  53. Miyauchi, K. Estimation of strengthening effects with crbon feber sheet for concrete column. In: Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures. pp. 217–224. Japan Concrete Institute (1997)

  54. Benzaid, R.; Mesbah, H.; Chikh, N.E.: FRP-confined concrete cylinders: axial compression experiments and strength model. J. Reinf. Plast. Compos. 29, 2469–2488 (2010). https://doi.org/10.1177/0731684409355199

    Article  Google Scholar 

  55. Lam, L.; Hussain, Q.; Joyklad, P.; Pimanmas, A.: Behavior of RC deep beams strengthened in shear using glass fiber reinforced polymer with mechanical anchors. In: International Conference on Environment and Civil Engineering (ICEACE’2015), Pattaya (Thailand) (2015)

  56. Ghernouti, Y.; Rabehi, B.: FRP-confined short concrete columns under compressive loading: experimental and modeling investigation. J. Reinf. Plast. Compos. 30, 241–255 (2010). https://doi.org/10.1177/0731684410393054

    Article  Google Scholar 

  57. Al-Salloum, Y.A. Compressive Strength Models of FRP-Confined Concrete.In: Proceedings of the 1st Asia-Pacific Conference on FRP in Structures, APFIS 2007. 1, 175–180 (2007)

  58. Bisby, L.A.; Dent, A.J.S.; Green, M.F.: Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. ACI Struct. J. 102, 62–72 (2005). https://doi.org/10.14359/13531

    Article  Google Scholar 

  59. Wu, H.-L.; Wang, Y.-F.; Yu, L.; Li, X.-R.: Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets. J. Compos. Constr. 13, 125–134 (2009). https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(125)

    Article  Google Scholar 

  60. Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P.: Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11, 201–210 (2007). https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)

    Article  Google Scholar 

  61. Ahmad, S.H.; Shah, S.P.: Complete triaxial stress-strain curves for concrete. J. Struct. Div. 108, 728–742 (1982). https://doi.org/10.1061/JSDEAG.0005921

    Article  Google Scholar 

  62. Hussain, Q.; Rattanapitikon, W.; Pimanmas, A.: Axial load behavior of circular and square concrete columns confined with sprayed fiber-reinforced polymer composites. Polym. Compos. 37, 2557–2567 (2016). https://doi.org/10.1002/PC.23450

    Article  Google Scholar 

  63. Karbhari, V.M.; Gao, Y.: Composite jacketed concrete under uniaxial compression—verification of simple design equations. J. Mater. Civ. Eng. 9, 185–193 (1997). https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)

    Article  Google Scholar 

  64. Samaan, M.; Mirmiran, A.; Shahawy, M.: Model of concrete confined by fiber composites. J. Struct. Eng. 124, 1025–1031 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)

    Article  Google Scholar 

  65. Saafi, M.; Toutanji, H.A.; Li, Z.: Behavior of concrete columns confined with fiber reinforced polymer tubes. ACI Mater. J. 96, 500–509 (1999). https://doi.org/10.14359/652

    Article  Google Scholar 

  66. Ilki, A.; Kumbasar, N.: Behavior of damaged and un-damaged concrete strengthened by carbon fiber composite sheets. Int. J. Struct. Eng. Mech. 13, 75–90 (2002)

    Article  Google Scholar 

  67. Spoelstra, M.R.; Monti, G.: FRP-confined concrete model. J. Compos. Constr. 3, 143–150 (1999). https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)

    Article  Google Scholar 

  68. Yan, L.: Plain concrete cylinders and beams externally strengthened with natural flax fabric reinforced epoxy composites. Mater. Struct. 49, 2083–2095 (2016). https://doi.org/10.1617/S11527-015-0635-1/FIGURES/15

    Article  Google Scholar 

  69. Popovics, S.: A numerical approach to the complete stress-strain curve of concrete. Cem. Concr. Res. 3, 583–599 (1973). https://doi.org/10.1016/0008-8846(73)90096-3

    Article  Google Scholar 

  70. Mander, J.B.; Priestley, M.J.N.; Park, R.: Theoretical stress–strain model for confined concrete. J. Struct. Eng. 114, 1804–1826 (1988). https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Science Research and Innovation Fundamental Fund Fiscal Year 2023. Thanks are also extended to Asian Institute of Technology (AIT), Thailand, for supporting test facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panuwat Joyklad.

Appendix

Appendix

See Tables 

Table 7 Compressive stress vs strain data for LS specimens

7,

Table 8 Compressive stress vs strain data for MS specimens

8,

Table 9 Compressive stress vs strain data for HS specimens

9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thansirichaisree, P., Mohamad, H., Zhou, M. et al. Hybrid B-CSM Composites Strengthening Approach for Improved Stress–Strain Behavior of Concrete Columns and Development of Analytical Models. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08978-8

Keywords

Navigation