Log in

Ultimate Conditions Prediction and Stress–Strain Model for FRP-Confined Concrete Using Machine Learning

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fiber-reinforced polymers (FRP) as an exterior reinforcement material are generally utilized to enhance the effectiveness of the current and new structures. FRP-confined concrete is characterized by its better mechanical properties. Accurately predicting the ultimate conditions and stress–strain responses of FRP-confined concrete make sense to achieve superior reliability and optimized functionality of structures. In this study, four prediction models based on machine learning, containing support vector regression (SVR), back-propagation neural network (BPNN), generalized regression neural network (GRNN) and extreme learning machine (ELM), were established, and their prediction performance were compared to achieve accurate prediction of the ultimate conditions of FRP-confined concrete. Moreover, a BPNN-based model to predict the stress–strain responses of FRP-confined concrete was proposed. A carefully evaluated and scrutinized database containing 384 FRP-confined concrete specimens under compressive load from various open-access sources was used to train these models. The results showed that these prediction models were more accurate in their predictions than the design-oriented models. Moreover, GRNN and SVR had superior prediction accuracy, followed by BPNN. The machine learning-based predictive models proposed in this study served as a valuable reference for the rapid prediction on the mechanical properties of FRP-confined concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

D :

Diameter of the FRP jacket

E c :

Elastic modulus of concrete

E FRP :

Elastic modulus of the FRP jacket

\(f_{{{\text{cc}}}}^{\prime }\) :

Ultimate axial stress of FRP-confined concrete

\(f_{{{\text{co}}}}^{\prime }\) :

Peak stress of unconfined concrete

\(f_{l}\) :

Confining stress

\(f_{{{\text{cc}}}}^{\prime } /f_{{{\text{co}}}}^{\prime }\) :

Ultimate strength enhancement ratio

\(f_{l} /f_{{{\text{co}}}}^{\prime }\) :

Confining ratio

H :

High of the FRP jacket

n :

Number of experimental samples

t :

Number of analysis steps

T :

Total sickness of the FRP jacket

R :

Radius of the cylinder

\({\mathbf{x}}\) :

Input variables

\({\mathbf{y}}\) :

Output variables

\(y_{i}\) :

Estimated value of ultimate strength

\(\hat{y}_{l}\) :

Experimental value of ultimate strength

\(\overline{y}\) :

Mean of \(y\) value

ε c u :

Ultimate axial strain of FRP-confined concrete

ε c o :

Peak strain of unconfined concrete

ε rup :

Hoop rapture strain of FRP jacket

\(\varepsilon_{t}\) :

Output ultimate strain

\(\rho_{K}\) :

Stiffness ratio

\(\rho_{\varepsilon }\) :

Strain ratio

\(\mu\) :

Specific characteristic’s average

\(\sigma_{rup}\) :

Strain ratio

\(\sigma\) :

Specific characteristic’s standard deviation

\(\sigma_{t}\) :

Output ultimate stress

References

  1. **ao, Y.: Applications of FRP composites in concrete columns. Adv. Struct. Eng. 7, 335–343 (2004). https://doi.org/10.1260/1369433041653552

    Article  Google Scholar 

  2. Chen, G.M.; He, Y.H.; Jiang, T.; Lin, C.J.: Behavior of CFRP-confined recycled aggregate concrete under axial compression. Constr. Build. Mater. 111, 85–97 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.054

    Article  Google Scholar 

  3. Wang, W.Q.; Wu, C.Q.; Liu, Z.X.; Si, H.L.: Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP. Compos. Struct. 204, 419–437 (2018). https://doi.org/10.1016/j.compstruct.2018.07.102

    Article  Google Scholar 

  4. Chen, G.M.; Zhang, J.J.; Wu, Y.F.; Lin, G.; Jiang, T.: Stress-strain behavior of FRP-confined recycled aggregate concrete in square columns of different sizes. J. Compos. Constr. 25, 04021040 (2021). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001150

    Article  Google Scholar 

  5. Vishwakarma, R.J.; Kumari, P.; Morkhade, S.G.; Bahekar, P.V.: Engineering properties of two-stage concrete: a critical review. Mater. Today: Proc. 77, 729–733 (2023). https://doi.org/10.1016/j.matpr.2022.11.416

    Article  Google Scholar 

  6. Wang, Y.L.; Chen, G.P.; Wan, B.L.; Han, B.G.; Ran, J.H.: Axial compressive behavior and confinement mechanism of circular FRP-steel tubed concrete stub columns. Compos. Struct. 256, 113082 (2021). https://doi.org/10.1016/j.compstruct.2020.113082

    Article  Google Scholar 

  7. Zhou, Y.W.; Zheng, Y.W.; Sui, L.L.; **ng, F.; Hu, J.J.; Li, P.D.: Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression. Compos. Part B-Eng. 162, 289–302 (2019). https://doi.org/10.1016/j.compositesb.2018.10.087

    Article  Google Scholar 

  8. Eid, R.; Paultre, P.: Compressive behavior of FRP-confined reinforced concrete columns. Eng. Struct. 132, 518–530 (2017). https://doi.org/10.1016/j.engstruct.2016.11.052

    Article  Google Scholar 

  9. Zeng, J.J.; Duan, Z.J.; Gao, W.Y.; Bai, Y.L.; Ouyang, L.J.: Compressive behavior of FRP-wrapped seawater sea-sand concrete with a square cross-section. Constr. Build. Mater. 262, 120881 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120881

    Article  Google Scholar 

  10. Ozbakkaloglu, T.; Lim, J.C.; Vincent, T.: FRP-confined concrete in circular sections: review and assessment of stress-strain models. Eng. Struct. 49, 1068–1088 (2013). https://doi.org/10.1016/j.engstruct.2012.06.010

    Article  Google Scholar 

  11. Ispir, M.; Dalgic, K.D.; Ilki, A.: Hybrid confinement of concrete through use of low and high rupture strain FRP. Compos. Part B-Eng. 153, 243–255 (2018). https://doi.org/10.1016/j.compositesb.2018.07.026

    Article  Google Scholar 

  12. Zeng, J.J.; Duan, Z.J.; Guo, Y.C.; ** strengthening technique: a comparative study. Adv. Struct. Eng. 23, 979–996 (2020). https://doi.org/10.1177/1369433219884451

    Article  Google Scholar 

  13. Baris, B.: An analytical model for stress-strain behavior of confined concrete. Eng. Struct. 27, 1040–1051 (2005). https://doi.org/10.1016/j.engstruct.2005.03.002

    Article  Google Scholar 

  14. Ozbakkaloglu, T.; Lim, J.C.: Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model. Compos. Part B-Eng. 55, 607–634 (2013). https://doi.org/10.1016/j.compositesb.2013.07.025

    Article  Google Scholar 

  15. **ao, Y.; Wu, H.: Compressive behavior of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. 12, 139–146 (2000). https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)

    Article  Google Scholar 

  16. Fam, A.Z.; Rizkalla, S.H.: Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes. ACI Struct. J. 98, 451–461 (2001)

    Google Scholar 

  17. Yu, T.; Teng, J.G.: Design of concrete-filled FRP tubular columns: provisions in the Chinese technical code for infrastructure application of FRP composites. J. Compos. Constr. 15, 451–461 (2011). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000159

    Article  Google Scholar 

  18. Wu, G.; Wu, Z.S.; Lu, Z.T.: Design-oriented stress-strain model for concrete prisms confined with FRP composites. Constr. Build. Mater. 21, 1107–1121 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.014

    Article  Google Scholar 

  19. Lam, L.; Teng, J.G.: Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 17, 471–489 (2003). https://doi.org/10.1016/S0950-0618(03)00045-X

    Article  Google Scholar 

  20. Pimanmas, A.; Saleem, S.: Dilation characteristics of PET FRP-confined concrete. J. Compos. Constr. 22, 04018006 (2018). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000841

    Article  Google Scholar 

  21. Benzaid, R.; Mesbah, H.; Chikh, N.E.: FRP-confined concrete cylinders: axial compression experiments and strength model. J Reinf Plast Comp. 29, 2469–2488 (2010). https://doi.org/10.1177/0731684409355199

    Article  Google Scholar 

  22. Mirmiran, A.; Singhvi, A.; Monti, G.: FRP-confined concrete model. J. Compos. Constr. 3, 62–65 (1999). https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(62)

    Article  Google Scholar 

  23. Marques, S.P.C.; Marques, D.C.S.C.; Da Silva, J.L.; Cavalcante, M.A.A.: Model for analysis of short columns of concrete confined by fiber-reinforced polymer. J. Compos. Constr. 8, 332–340 (2004). https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(332)

    Article  Google Scholar 

  24. Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z.: Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13, 269–278 (2009). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012

    Article  Google Scholar 

  25. Youssef, M.N.; Feng, M.Q.; Mosallam, A.S.: Stress-strain model for concrete confined by FRP composites. Compos. Part B-Eng. 38, 614–628 (2007). https://doi.org/10.1016/j.compositesb.2006.07.020

    Article  Google Scholar 

  26. Lim, J.C.; Ozbakkaloglu, T.: Confinement model for FRP-confined high-strength concrete. J. Compos. Constr. 18, 08216001 (2014). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000764

    Article  Google Scholar 

  27. Pour, A.F.; Nguyen, G.D.; Vincent, T.; Ozbakkaloglu, T.: Investigation of the compressive behavior and failure modes of unconfined and FRP-confined concrete using digital image correlation. Compos. Struct. 252, 112642 (2020). https://doi.org/10.1016/j.compstruct.2020.112642

    Article  Google Scholar 

  28. Pour, A.F.; Ozbakkaloglu, T.; Vincent, T.: Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete. Eng. Struct. 175, 501–516 (2018). https://doi.org/10.1016/j.engstruct.2018.07.099

    Article  Google Scholar 

  29. El-Gamal, S.E.; Al-Nuaimi, A.; Al-Saidy, A.; Al-Lawati, A.: Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams. Constr. Build. Mater. 118, 52–62 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.152

    Article  Google Scholar 

  30. Naser, M.Z.: Machine learning assessment of FRP-strengthened and reinforced concrete members. ACI Struct. J. 117, 237–251 (2020). https://doi.org/10.14359/51728073

    Article  Google Scholar 

  31. Wu, G.; Dong, Z.Q.; Wu, Z.S.; Zhang, L.W.: Performance and parametric analysis of flexural strengthening for RC beams with NSM-CFRP bars. J. Compos. Constr. 18, 04013051 (2014). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000451

    Article  Google Scholar 

  32. Choobbor, S.S.; Hawileh, R.A.; Abu-Obeidah, A.; Abdalla, J.A.: Performance of hybrid carbon and basalt FRP sheets in strengthening concrete beams in flexure. Compos. Struct. 227, 111337 (2019). https://doi.org/10.1016/j.compstruct.2019.111337

    Article  Google Scholar 

  33. Ghaboussi, J.; Garrett, J.H.; Wu, X.: Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117, 132–153 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)

    Article  Google Scholar 

  34. Gholizadeh, S.; Fattahi, F.: Damage-controlled performance-based design optimization of steel moment frames. Struct. Des. Tall Spec. 27, e1498 (2018). https://doi.org/10.1002/tal.1498

    Article  Google Scholar 

  35. Gholizadeh, S.; Aligholizadeh, V.: Reliability-based optimum seismic design of RC frames by a metamodel and metaheuristics. Struct. Des. Tall Spec. 28, e1552 (2019). https://doi.org/10.1002/tal.1552

    Article  Google Scholar 

  36. Gholizadeh, S.: Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv. Eng. Softw. 81, 50–65 (2015). https://doi.org/10.1016/j.advengsoft.2014.11.003

    Article  Google Scholar 

  37. Gholizadeh, S.; Mohammadi, M.: Reliability-based seismic optimization of steel frames by metaheuristics and neural networks. ASCE-ASME J. Risk Uncertain. Eng. A 3, 04016013 (2017). https://doi.org/10.1061/AJRUA6.0000892

    Article  Google Scholar 

  38. Mansouri, I.; Ozbakkaloglu, T.; Kisi, O.; **e, T.Y.: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Mater. Struct. 49, 4319–4334 (2016). https://doi.org/10.1617/s11527-015-0790-4

    Article  Google Scholar 

  39. Naderpour, H.; Kheyroddin, A.; Amiri, G.G.: Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos. Struct. 92, 2817–2829 (2010). https://doi.org/10.1016/j.compstruct.2010.04.008

    Article  Google Scholar 

  40. Ahmad, A.; Plevris, V.; Khan, Q.: Prediction of properties of FRP-confined concrete cylinders based on artificial neural networks. Crystals 10, 811 (2020). https://doi.org/10.3390/cryst10090811

    Article  Google Scholar 

  41. Elsanadedy, H.M.; Al-Salloum, Y.A.; Abbas, H.; Alsayed, S.H.: Prediction of strength parameters of FRP-confined concrete. Compos. Part B-Eng. 43, 228–239 (2012). https://doi.org/10.1016/j.compositesb.2011.08.043

    Article  Google Scholar 

  42. Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T.: Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 24, 709–718 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.037

    Article  Google Scholar 

  43. Jiang, K.J.; Han, Q.; Bai, Y.L.; Du, X.L.: Data-driven ultimate conditions prediction and stress-strain model for FRP-confined concrete. Compos. Struct. 242, 112094 (2020). https://doi.org/10.1016/j.compstruct.2020.112094

    Article  Google Scholar 

  44. Jiang, T.; Teng, J.G.: Analysis-oriented stress-strain models for FRP-confined concrete. Eng. Struct. 29, 2968–2986 (2007). https://doi.org/10.1016/j.engstruct.2007.01.010

    Article  Google Scholar 

  45. **ao, Q.G.; Teng, J.G.; Yu, T.: Behavior and modeling of confined high-strength concrete. J. Compos. Constr. 14, 249–259 (2010). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070

    Article  Google Scholar 

  46. Ozbakkaloglu, T.; Akin, E.: Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. J. Compos. Constr. 16, 451–463 (2012). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273

    Article  Google Scholar 

  47. Berthet, J.F.; Ferrier, E.; Hamelin, P.: Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study. Constr. Build. Mater. 19, 223–232 (2005). https://doi.org/10.1016/j.conbuildmat.2004.05.012

    Article  Google Scholar 

  48. Cui, C.; Sheikh, S.A.: Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers. J. Compos. Constr. 14, 553–561 (2010). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116

    Article  Google Scholar 

  49. De Oliveira, D.S.; Raiz, V.; Carrazedo, R.: Experimental study on normal-strength, high-strength and ultrahigh-strength concrete confined by carbon and glass FRP laminates. J. Compos. Constr. 23, 04018072 (2019). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000912

    Article  Google Scholar 

  50. Lam, L.; Teng, J.G.; Cheung, C.H.; **ao, Y.: FRP-confined concrete under axial cyclic compression. Cement Concr. Comp. 28, 949–958 (2006). https://doi.org/10.1016/j.cemconcomp.2006.07.007

    Article  Google Scholar 

  51. Vincent, T.; Ozbakkaloglu, T.: Influence of fiber orientation and specimen end condition on axial’ compressive behavior of FRP-confined concrete. Constr. Build. Mater. 47, 814–826 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.085

    Article  Google Scholar 

  52. Shehata, I.A.E.M.; Carneiro, L.A.V.; Shehata, L.C.D.: Strength of short concrete columns confined with CFRP sheets. Mater. Struct. 35, 50–58 (2002). https://doi.org/10.1007/BF02482090

    Article  Google Scholar 

  53. Zhao, J.L.; Yu, T.; Teng, J.G.: Stress-strain behavior of FRP-confined recycled aggregate concrete. J. Compos. Constr. 19, 04014054 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000513

    Article  Google Scholar 

  54. Shahawy, M.; Mirmiran, A.; Beitelman, T.: Tests and modeling of carbon-wrapped concrete columns. Compos. Part B-Eng. 31, 471–480 (2000). https://doi.org/10.1016/S1359-8368(00)00021-4

    Article  Google Scholar 

  55. Lam, L.; Teng, J.G.: Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 8, 539–548 (2004). https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)

    Article  Google Scholar 

  56. Vincent, T.; Ozbakkaloglu, T.: Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete. Compos. Part B-Eng. 50, 413–428 (2013). https://doi.org/10.1016/j.compositesb.2013.02.017

    Article  Google Scholar 

  57. Jiang, T.; Teng, J.G.: Analysis-oriented stress–strain models for FRP–confined concrete: a comparative assessment. Eng. Struct. 29, 2968–2986 (2007). https://doi.org/10.1016/j.engstruct.2007.01.010

    Article  Google Scholar 

  58. ACI (American Concrete Institute): Guide for the design and construction of externally bonded FRP systems for strengthening existing structures (ACI 4402R-08). Farmingt. Hills, Mich. Am. Concr. Institute (2014)

  59. Ilki, A.; Kumbasar, N.; Koc, V.: Low strength concrete members externally confined with FRP sheets. Struct. Eng. Mech. 18, 167–194 (2004). https://doi.org/10.12989/sem.2004.18.2.167

    Article  Google Scholar 

  60. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  61. Bourinet, J.M.: Rare-event probability estimation with adaptive support vector regression surrogates. Reliab. Eng. Syst. Safe. 150, 210–221 (2016). https://doi.org/10.1016/j.ress.2016.01.023

    Article  Google Scholar 

  62. Vapnik, V.; Golowich, S.E.; Smola, A.J.: Support vector method for function approximation regression estimation, and signal processing. Adv. Neural. Inf. Process. Syst. 9(9), 281–287 (1997)

    Google Scholar 

  63. Yao, L.; Fang, Z.P.; **ao, Y.Q.; Hou, J.J.; Fu, Z.J.: An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine. Energy 214, 118866 (2021). https://doi.org/10.1016/j.energy.2020.118866

    Article  Google Scholar 

  64. Chen, Y.F.; Hou, F.H.; Dong, S.H.; Guo, L.Y.; **a, T.J.; He, G.Y.: Reliability evaluation of corroded pipeline under combined loadings based on back propagation neural network method. Ocean Eng. 262, 111910 (2022). https://doi.org/10.1016/j.oceaneng.2022.111910

    Article  Google Scholar 

  65. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576 (1991). https://doi.org/10.1109/72.97934

    Article  Google Scholar 

  66. Wang, L.N.; Lee, T.J.; Bavendiek, J.; Eckstein, L.: A data-driven approach towards the full anthropometric measurements prediction via generalized regression neural networks. Appl. Soft Comput. 109, 107551 (2021). https://doi.org/10.1016/j.asoc.2021.107551

    Article  Google Scholar 

  67. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52208160); the Natural Science Foundation of Hebei Province, China (E2021202012); the Science and Technology Research Project of Higher Education Institutions in Hebei Province, China (CXY2023016) and the Hebei Province Graduate Innovation Funding Project, China (CXZZSS2023027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Zhang or Pang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix

Appendix

See Table 5.

Table 5 Database in this study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, T., Zhai, Y. et al. Ultimate Conditions Prediction and Stress–Strain Model for FRP-Confined Concrete Using Machine Learning. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08849-2

Keywords

Navigation