Log in

Abstract

Microeconomic theory often assumes that a producer maximizes its profit. As a consequence, under perfect competition, the optimal production amount is either zero or positive, where the latter satisfies the condition that the price is equal to the cost for the additional production amount (the marginal cost). This paper proposes two statistical models directly derived from this relationship and develops a Bayesian estimation method for the parameters included in this relationship. The models are applied to analyze vegetable production in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abadir KM, Magnus JR (2005) Matrix algebra. Econometric exercises 1. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Amemiya T (1973) Regression analysis when the dependent variable is truncated normal. Econometrica 41(6):997–1016

    Article  MathSciNet  Google Scholar 

  • Angrist JD (2001) Estimation of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical practice. J Bus Econ Stat 19(1):2–16

    Article  MathSciNet  Google Scholar 

  • Bernard AB, Redding SJ, Schott PK (2010) Multiple-product firms and product switching. Am Econ Rev 100(1):70–97

    Article  Google Scholar 

  • Chib S (1992) Bayes inference in the Tobit censored regression model. J Econom 51(1–2):79–99

    Article  MathSciNet  Google Scholar 

  • Chib S (2004) Markov chain Monte Carlo technology. In: Gentle JE, Härdle W, Mori Y (eds) Handbook of computational statistics: concepts and methods. Springer, Berlin, pp 71–102

    Google Scholar 

  • Cooley TF, DeCanio SJ (1977) Rational expectations in American agriculture, 1867–1914. Rev Econ Stat 59(1):9–17

    Article  Google Scholar 

  • Deschênes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. Am Econ Rev 97(1):354–385

    Article  Google Scholar 

  • Diewert WE, Wales TJ (1987) Flexible functional forms and global curvature conditions. Econometrica 55(1):43–68

    Article  MathSciNet  Google Scholar 

  • Eaton ML, Sudderth WD (2010) Invariance of posterior distribution under reparametrization. Sankhyā 72:101–118

    Article  MathSciNet  Google Scholar 

  • Eden B, Griliches Z (1993) Productivity, market power, and capacity utilization when spot markets are complete. Am Econ Rev 83(2):219–223

    Google Scholar 

  • Feng CX (2021) A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J Stat Distrib Appl 8:8

    Article  Google Scholar 

  • Freedman D, Diaconis P (1981) On the hisgtram as a density estimator: \(l_{2}\) theory. Probab Theory Relat Fields 57(4):453–476

    Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov Chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014) Bayeian data analysis. Texts in statistical science, e. CRC Press, Boca Raton

    Google Scholar 

  • Goodwin TH, Sheffrin SM (1982) Testing the rational expectations hypothesis in an agricultural market. Rev Econ Stat 64(4):658–667

    Article  Google Scholar 

  • Hall P, Yatchew A (2007) Nonparametric estimation when data on derivatives are available. Ann Stat 35(1):300–323

    Article  MathSciNet  Google Scholar 

  • Hall RE (1988) The relation between price and marginal cost in U.S. industry. J Polit Econ 96(5):921–947

    Article  Google Scholar 

  • Intriligator MD (1983) Economic and econometric models. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics. Handbook in economics 2, Chapter 3, vol 1. North-Holland, Amsterdam, pp 182–221

    Google Scholar 

  • Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc Lond Ser A Math Phys Sci 186(1007):453–461

    MathSciNet  Google Scholar 

  • Jorgenson DW (1986) Econometric methods for modeling producer behavior. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics 2. Handbook in economics 2, Chapter 31, vol 3. North-Holland, Amsterdam, pp 1841–1915

    Google Scholar 

  • Just RE, Zilberman D, Hochman E (1983) Estimation of multicrop production functions. Am J Agric Econ 65(4):770–780

    Article  Google Scholar 

  • Kass RE, Wasserman L (1996) The selection of prior distributions by formal rules. J Am Stat Assoc 91(435):1343–1370

    Article  Google Scholar 

  • Koop G (2003) Bayesian econometrics. Wiley, Chichester

    Google Scholar 

  • Lancaster T (2004) An introduction to modern Bayesian econometrics. Blackwell, Malden

    Google Scholar 

  • Li T, Zheng X (2008) Semiparametric Bayesian inference for dynamic Tobit panel data models with unobserved heterogeneity. J Appl Econom 23(6):699–728

    Article  MathSciNet  Google Scholar 

  • Liu J, Wu S, Zidek JV (1997) On segmented multivariate regression. Stat Sin 7(2):497–525

    MathSciNet  Google Scholar 

  • Liu L, Shih Y-CT, Strawderman RL, Zhang D, Johnson BA, Chai H (2019) Statistical analysis of zero-inflated nonnegative continuous data: a review. Stat Sci 34(2):253–279

    Article  MathSciNet  Google Scholar 

  • Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New York

    Google Scholar 

  • McGee VE, Carleton WT (1970) Piecewise regression. J Am Stat Assoc 65(331):1109–1124

    Article  Google Scholar 

  • Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84(4):753–771

    Google Scholar 

  • Moffitt R (1990) The econometrics of kinked budget constraints. J Econ Perspect 4(2):119–139

    Article  Google Scholar 

  • Moschini G (2001) Production risk and the estimation of ex-ante cost functions. J Econom 100(2):357–380

    Article  MathSciNet  Google Scholar 

  • Neelon B, O’Malley AJ, Smith VA (2016) Modeling zero-modified count and semicontinuous data in health services research part 1: background and overview. Stat Med 35(27):5070–5093

    Article  MathSciNet  Google Scholar 

  • Norrbin SC (1993) The relation between price and marginal cost in U.S. industry: a contradiction. J Polit Econ 101(6):1149–1164

    Article  Google Scholar 

  • Pfouts RW (1961) The theory of cost and production in the multi-product firm. Econometrica 29(4):650–658

    Article  Google Scholar 

  • Pope RD, Chavas J-P (1994) Cost functions under production uncertainty. Am J Agric Econ 76(2):196–204

    Article  Google Scholar 

  • Pope RD, Just RE (1996) Empirical implementation of ex ante cost functions. J Econom 72(1–2):231–249

    Article  Google Scholar 

  • Porter RH (1983) A study of cartel stability: the joint executive committee, 1880–1886. Bell J Econ 14(2):301–314

    Article  MathSciNet  Google Scholar 

  • Pörtner H-O, Roberts D, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) (2022) Climate change 2022: impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Reiss PC, Wolak FA (2007) Structural econometric modeling: rationales and examples from industrial organization. In: Heckman JJ, Leamer EE (eds) Handbook of econometrics. Handbook in economics 2, Chapter 64, vol 6A. North-Holland, Amsterdam, pp 4277–4415

    Google Scholar 

  • Sandmo A (1971) On the theory of the competitive firm under price uncertainty. Am Econ Rev 61(1):65–73

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B (Stat Methodol) 64(4):583–639

    Article  MathSciNet  Google Scholar 

  • Stock JH, Watson MW (2019) Introduction to econometrics. Pearson series in economics, 4th edn. Pearson, New York

    Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    Article  MathSciNet  Google Scholar 

  • Zellner A, Keuzenkamp HA, McAleer M (eds) (2001) Simplicity, inference and modeling: kee** it sophisticatedly simple. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, the Associate Editor, and three anonymous reviewers for their immeasurable effort to improve our paper. We also thank Professor Yasuhiro Omori (University of Tokyo), Professor Toshiaki Watanabe (Hitotsubashi University), Professor Jouchi Nakajima (Hitotsubashi University), and Professor Kaoru Irie (University of Tokyo) for their helpful comments at the conference held at University of Tokyo in 2022. This research was performed by the Environment Research and Technology Development Fund (JPMEERF20S11819) of the Environmental Restoration and Conservation Agency provided by Ministry of the Environment of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Miyawaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Jeffreys’ Prior

The Jeffreys’ prior is proportional to the square root of the determinant of the Fisher information matrix. To this end, the following formula for the determinant of a partitioned matrix is applied: \(| \varvec{A} | = | \varvec{A}_{11} | | \varvec{A}_{22} - \varvec{A}_{21} \varvec{A}_{11}^{-1} \varvec{A}_{12} | = | \varvec{A}_{22} | | \varvec{A}_{11} - \varvec{A}_{12} \varvec{A}_{22}^{-1} \varvec{A}_{21} |\), where

$$\begin{aligned} \varvec{A} = \begin{pmatrix} \varvec{A}_{11} &{} \varvec{A}_{12} \\ \varvec{A}_{21} &{} \varvec{A}_{22} \end{pmatrix}. \end{aligned}$$

See, e.g., Abadir and Magnus (2005) for a proof of this formula.

The Fisher information matrix for the linear model is given by

$$\begin{aligned} \varvec{F} = -E \begin{pmatrix} \frac{ \partial ^{2} \log f }{ \partial \varvec{\zeta } \partial \varvec{\zeta }^{\prime } } &{} \frac{ \partial ^{2} \log f }{ \partial \varvec{\zeta } \partial \varvec{\lambda }^{A \prime } } \\ \frac{ \partial ^{2} \log f }{ \partial \varvec{\lambda }^{A} \partial \varvec{\zeta }^{\prime } } &{} \frac{ \partial ^{2} \log f }{ \partial \varvec{\lambda }^{A} \partial \varvec{\lambda }^{A \prime } } \end{pmatrix}, \end{aligned}$$

where \(\varvec{\zeta } = (\alpha , \sigma ^{2}, \beta _{0}, \varvec{\beta }^{\prime })^{\prime }\) and \(\varvec{\lambda }^{A} = (\lambda _{i}^{A})_{i \in {\mathcal {C}}_{0}}\). The expectation is over the conditional distribution of \(y_{i}\) (\(i = 1, \dots , n\)). This is a partitioned matrix, where \(\varvec{F}_{ij}\) is its (ij) block element for \(i, j = 1, 2\). After some calculations, we have

$$\begin{aligned} \varvec{F}_{11}&= \begin{pmatrix} \frac{2 n_{1}}{\alpha ^{2}} + \frac{1}{ \alpha ^{2} \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} d_{i}^{2} &{} -\frac{n_{1}}{ \alpha \sigma ^{2} } &{} \frac{1}{ \alpha \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i}^{\prime } d_{i} \\ -\frac{n_{1}}{ \alpha \sigma ^{2} } &{} \frac{n}{2 (\sigma ^{2})^{2}} &{} 0 \\ \frac{1}{ \alpha \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i} d_{i} &{} 0 &{} \frac{1}{\sigma ^{2}} \sum _{i} \varvec{z}_{i} \varvec{z}_{i}^{\prime } \end{pmatrix}, \\ \varvec{F}_{22}&= \frac{1}{\sigma ^{2}} \varvec{I}_{n_{0}}, \\ \varvec{F}_{12}&= \varvec{F}_{21}^{\prime } = \begin{pmatrix} \varvec{0}^{\prime } \\ \varvec{0}^{\prime } \\ -\frac{1}{\sigma ^{2}} \varvec{z}_{i} \end{pmatrix}, \end{aligned}$$

where \(\varvec{z}_{i}^{\prime } = (1, \varvec{x}_{i}^{\prime })\), \(\varvec{I}_{n_{0}}\) is the \(n_{0}\)-dimensional unit matrix, the index i in \(\varvec{F}_{12}\) is over \(i \in {\mathcal {C}}_{0}\), and

$$\begin{aligned} d_{i}&= {\left\{ \begin{array}{ll} p_{i} + \lambda _{i}^{A} - \beta _{0} - \varvec{x}_{i}^{\prime } \varvec{\beta }, &{}\text {if } i \in {\mathcal {C}}_{0}, \\ p_{i} - \beta _{0} - \varvec{x}_{i}^{\prime } \varvec{\beta }, &{}\text {if } i \in {\mathcal {C}}_{1}. \end{array}\right. } \end{aligned}$$
(7)

Then,

$$\begin{aligned} \varvec{F}_{11} - \varvec{F}_{12} \varvec{F}_{22}^{-1} \varvec{F}_{21} = \begin{pmatrix} \frac{2 n_{1}}{\alpha ^{2}} + \frac{1}{ \alpha ^{2} \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} d_{i}^{2} &{} -\frac{n_{1}}{ \alpha \sigma ^{2} } &{} \frac{1}{ \alpha \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i}^{\prime } d_{i} \\ -\frac{n_{1}}{ \alpha \sigma ^{2} } &{} \frac{n}{2 (\sigma ^{2})^{2}} &{} 0 \\ \frac{1}{ \alpha \sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i} d_{i} &{} 0 &{} \frac{1}{\sigma ^{2}} \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i} \varvec{z}_{i}^{\prime } \end{pmatrix}. \end{aligned}$$

After combining all the expressions above and picking up the terms that include the model parameters, we have

$$\begin{aligned} | \varvec{F} |&= \begin{vmatrix} \frac{n}{2 (\sigma ^{2})^{2}}&0 \\ 0&\frac{1}{\sigma ^{2} } \sum _{i \in {\mathcal {C}}_{1}} \varvec{z}_{i} \varvec{z}_{i}^{\prime } \end{vmatrix} \times \left\{ \frac{2 n_{1}}{\alpha ^{2}} \left( 1 - \frac{n_{1}}{n} \right) + \frac{1}{ \alpha ^{2} \sigma ^{2} } q_{1}^{2} \right\} \\&\propto \frac{1}{ \alpha ^{2} \left( \sigma ^{2} \right) ^{k+4+n_{0}} } \left\{ \sigma ^{2} + \frac{ q_{1}^{2} }{ 2 n_{1} \left( 1 - \frac{n_{1}}{n} \right) } \right\} . \end{aligned}$$

Therefore, we have the Jeffreys’ prior found in Equation (5).

Appendix B: Propriety of the Posterior Distribution

This section will give a proof that the posterior distribution that uses Prior (5) is proper. The posterior density is proportional to

$$\begin{aligned} \pi \left( \alpha , \beta _{0}, \varvec{\beta }, \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \right) \propto&| \alpha |^{n_{1}-1} \left( \sigma ^{2} \right) ^{-(k + n_{0} + n + 4) / 2} \exp \left\{ -\frac{1}{\sigma ^{2}} \sum _{i = 1}^{n} \left( d_{i} - \alpha y_{i} \right) ^{2} \right\} \\&\times I \left( \alpha> 0 \right) I \left( \sigma ^{2}> 0 \right) \left\{ \frac{1}{ \sigma ^{2} } + \frac{ q_{1}^{2} }{ 2 n_{1} \left( 1 - \frac{n_{1}}{n} \right) } \right\} ^{1/2} \\&\times \prod _{i \in {\mathcal {C}}_{0}} I \left( \lambda _{i}^{A}> 0 \right) \\ <&| \alpha |^{n_{1}-1} \left( \sigma ^{2} \right) ^{-(k + n_{0} + n + 4) / 2} \exp \left\{ -\frac{1}{\sigma ^{2}} \sum _{i = 1}^{n} \left( d_{i} - \alpha y_{i} \right) ^{2} \right\} \\&\times I \left( \alpha> 0 \right) I \left( \sigma ^{2}> 0 \right) \left( \frac{1}{\sigma } + \frac{q_{1}}{ \sqrt{2 n_{1} \left( 1 - \frac{n_{1}}{n} \right) } } \right) \\&\times \prod _{i \in {\mathcal {C}}_{0}} I \left( \lambda _{i}^{A} > 0 \right) . \end{aligned}$$

Our proof shows that the integral of the function on the most right-hand side over its parameter space is finite.

With the rank condition, two normalizing constants from the inverse gamma distribution and the Arellano-Valle and Bolfarine generalized t distribution are finite. Then, we have

$$\begin{aligned} \int \pi \left( \alpha , \beta _{0}, \varvec{\beta }, \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \right) d \sigma ^{2} d \beta _{0} d \varvec{\beta } <&(\text {some finite constant}) \\&\times | \alpha |^{n-1} \left( \varvec{e}^{\prime } \varvec{M} \varvec{e} \right) ^{-(n_{0} + n + 1) / 2}, \end{aligned}$$

where \(\varvec{M} = \varvec{I}_{n} - \varvec{Z} ( \varvec{Z}^{\prime } \varvec{Z} )^{-1} \varvec{Z}^{\prime }\), \(\varvec{e}\) is the n-dimensional vector whose i-th row is defined as

$$\begin{aligned} e_{i} = {\left\{ \begin{array}{ll} p_{i} + \lambda _{i}^{A} - \alpha y_{i}, &{}\text {if } i \in {\mathcal {C}}_{0}, \\ p_{i} - \alpha y_{i}, &{}\text {if } i \in {\mathcal {C}}_{1}. \end{array}\right. } \end{aligned}$$
(8)

Let

$$\begin{aligned} f \left( \alpha , \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \right) = \left( \alpha ^{2} \right) ^{(n-1) / 2} \left( \varvec{e}^{\prime } \varvec{M} \varvec{e} \right) ^{-(n_{0} + n + 1) / 2}. \end{aligned}$$

This function is integrable on any compact subset A of the nonnegative orthant because of the following three reasons: (i) \(| \alpha |^{(n-1)/2}\) is continuous and closed on A, (ii) \(\varvec{e}^{\prime } \varvec{M} \varvec{e}\) is so as well, and (iii) \(\varvec{e}^{\prime } \varvec{M} \varvec{e} > 0\) because of the rank condition.

Further, let

$$\begin{aligned} g \left( \alpha , \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \right) = \left( \Vert \varvec{\xi } \Vert ^{2} \right) ^{(n-1) / 2} \left( \varvec{e}^{\prime } \varvec{M} \varvec{e} \right) ^{-(n_{0} + n + 1) / 2}, \end{aligned}$$

where \(\varvec{\xi } = (\alpha , \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}})\) and \(\Vert \varvec{\xi } \Vert \) is the Euclidean norm of \(\varvec{\xi }\). It is clear that \(f \le g\) for any possible value of \(\varvec{\xi }\). This function is integrable on A.

We will show that \(g = O ( \Vert \varvec{\xi } \Vert ^{-(n_{0} + 2)})\), where the order notation denotes \(|g| \le M \Vert \varvec{\xi } \Vert ^{-(n_{0} + 2)}\) for some constant M. The polar coordinate representation of \(\varvec{\xi }\) leads to

$$\begin{aligned} \frac{ \Vert \varvec{\xi } \Vert ^{2} }{ \varvec{e}^{\prime } \varvec{M} \varvec{e} } = \frac{ d r^{2} }{ a + b r + c r^{2} }, \end{aligned}$$

where abcd are some functions of triangular functions and r is the radial distance from the origin. We note that \(c r^{2} = ( \varvec{e} - \varvec{p} )^{\prime } \varvec{M} ( \varvec{e} - \varvec{p} )\), where \(\varvec{p} = (p_{1}, \dots , p_{n})^{\prime }\). By the rank condition, \(c r^{2} > 0\). So \(c \ne 0\) as long as \(r > 0\). Then, the left-hand side converges to 1/c as \(\Vert \varvec{\xi } \Vert \) goes to infinity. Because

$$\begin{aligned} g \times \left( \Vert \varvec{\xi } \Vert ^{(n_{0} + 2)} \right) = \left( \frac{ \Vert \varvec{\xi } \Vert ^{2} }{ \varvec{e}^{\prime } \varvec{M} \varvec{e} } \right) ^{(n_{0} + n + 1) / 2}, \end{aligned}$$

we have the result.

Because the order result shows that g is integrable over the nonnegative orthant, f is so as well, which completes the proof.

Appendix C: Gibbs Sampler

This section describes the Gibbs sampler for the Bayesian estimation of the linear model. It is implemented in the following six-step algorithm.

Step 1. Initialize the model parameters \((\alpha , \beta _{0}, \varvec{\beta }, \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}})\).

Step 2. Generate \(\alpha \) conditional on \(\beta _{0}, \varvec{\beta }, \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}}\).

The full conditional posterior density for \(\alpha \) is proportional to

$$\begin{aligned} \pi \left( \alpha \mid \beta _{0}, \varvec{\beta }, \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \right) \propto&\left| \alpha \right| ^{n_{1}-1} \\&\times \exp \left[ -\frac{1}{2 \sigma ^{2}} \left\{ \alpha ^{2} \left( \sum _{i = 1}^{n} y_{i}^{2} \right) - 2 \alpha \left( \sum _{i = 1}^{n} y_{i} d_{i} \right) \right\} \right] \\ =&\left| \alpha \right| ^{n_{1}-1} \exp \left( -\frac{R}{2} \alpha ^{2} + Q \alpha \right) , \end{aligned}$$

where \(Q = \sigma ^{-2} \sum _{i = 1}^{n} y_{i} d_{i}\) (see Eq. (7) for \(d_{i}\)) and \(R = \sigma ^{-2} \sum _{i = 1}^{n} y_{i}^{2}\). This conditional density is nonstandard, and we apply the Metropolis–Hastings (MH) algorithm to draw a sample from it.

The proposal used in this step is derived as follows. The mode of this conditional density is

$$\begin{aligned} m&= \frac{ Q + \sqrt{ Q^{2} + 4 R \left( n_{1} - 1 \right) } }{ 2 R }, \end{aligned}$$

and the second derivative of the log conditional density evaluated at the mode m is given by

$$\begin{aligned} H&= -\frac{n_{1}-1}{m^{2}} - R. \end{aligned}$$

Then, the Taylor series expansion of the log conditional density around the mode gives the proposal \(TN_{(0, \infty )} (m, -H^{-1})\). Let \(\alpha ^{(-1)}\) and \({\tilde{\alpha }}\) be the sample recorded in the previous Markov chain and the candidate drawn from the proposal density, respectively. The candidate is accepted with probability

$$\begin{aligned}&\min \left[ 1, \frac{ g \left( {\tilde{\alpha }} \right) }{ g \left( \alpha ^{(-1)} \right) } \right] , \end{aligned}$$

where

$$\begin{aligned}&g \left( \alpha \right) = \left| \alpha \right| ^{n_{1}-1} \exp \left\{ -\frac{1}{2} \left( R + H \right) \alpha ^{2} + \left( Q + m H \right) \alpha \right\} . \end{aligned}$$

Step 3. Generate \((\beta _{0}, \varvec{\beta })\) conditional on \(\alpha , \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}}\).

The full conditional distribution for \((\beta _{0}, \varvec{\beta })\) is the multivariate normal distribution, which is given by

$$\begin{aligned} \left( \beta _{0}, \varvec{\beta }^{\prime } \right) ^{\prime } \mid \alpha , \sigma ^{2}, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}} \sim&N \left( \varvec{b}_{1}, \varvec{B}_{1} \right) , \end{aligned}$$

where \(\varvec{z}_{i}^{\prime } = (1, \varvec{x}_{i}^{\prime })\), \(\varvec{B}_{1}^{-1} = \sigma ^{-2} \sum _{i = 1}^{n} \varvec{z}_{i} \varvec{z}_{i}^{\prime }\), and \(\varvec{b}_{1} = \sigma ^{-2} \varvec{B}_{1} \sum _{i = 1}^{n} e_{i} \varvec{z}_{i}\) (see Eq. (8) for \(e_{i}\)).

Step 4. Generate \(\sigma ^{2}\) conditional on \(\alpha , \beta _{0}, \varvec{\beta }, \{ \lambda _{i}^{A} \}_{i \in {\mathcal {C}}_{0}}\).

Because the full conditional density for \(\sigma ^{2}\) is also nonstandard, the MH algorithm is applied as well. The proposal for this generation is a mixture of the inverse gamma distributions \(IG (r_{1}/2, S_{1}/2)\) and \(IG ((r_{1}+1)/2, S_{1}/2)\) with the respective weights w and \(1-w\), where \(r_{1} = k + 2 + n + n_{0}\), \(S_{1} = \sum _{i = 1}^{n} (d_{i} - \alpha y_{i})^{2}\), and

$$\begin{aligned} w = \frac{ q_{1} }{ q_{1} + \sqrt{ 2 n_{1} \left( 1 - \frac{n_{1}}{n} \right) } }. \end{aligned}$$

The acceptance probability for a candidate \({\tilde{\sigma }}^{2}\) in terms of the previous sample \(\sigma ^{2, (-1)}\) is given by

$$\begin{aligned} \min \left[ 1, \frac{ g \left( {\tilde{\sigma }}^{2} \right) }{ g \left( \sigma ^{2, (-1)} \right) } \right] , \quad \text {where } g (\sigma ^{2}) = \frac{ \sqrt{ \left( 1 - w \right) ^{2} + w^{2} \sigma ^{2} } }{ 1 - w + w \sigma }. \end{aligned}$$

Step 5. Generate \(\lambda _{i}^{A}\) conditional on \(\alpha , \beta _{0}, \varvec{\beta }, \sigma ^{2}\) for \(i \in {\mathcal {C}}_{0}\).

The full conditional distribution for \(\lambda _{i}^{A}\) is the truncated normal distribution, which is given by

$$\begin{aligned} \lambda _{i}^{A} \mid \alpha , \beta _{0}, \varvec{\beta }, \sigma ^{2} \sim&TN_{(0, \infty )} \left( -p_{i} + \alpha y_{i} + \beta _{0} + \varvec{x}_{i}^{\prime } \varvec{\beta }, \sigma ^{2} \right) . \end{aligned}$$

Step 6. Repeat Step 2 through Step 5.

Appendix D: Chain Paths

To have a closer look at the convergence of the Markov chain, this section provides chain paths of model parameters for the numerical analysis as well as the empirical analysis.

First, Fig. 10 shows chain paths for samples under the Jeffreys’ prior with the original dataset.

Fig. 10
figure 10

Chain paths with the original dataset under the Jeffreys’ prior

These paths seem to achieve convergence. Because other paths (ones under the proper priors or ones with transformed dataset) are very similar, we suppress them.

Fig. 11
figure 11

Chain paths for tomato

Next, Fig. 11 shows chain paths for the empirical analysis. Because the number of prefectures of no production amount is small, the MCMC samples for tomato are picked up to draw this figure. From this figure, all chains seem to reach convergence, and our proposed method performs well for this dataset.

Appendix E: Histograms of Climate-Related Variables

Figure 12 shows the histograms of climate-related variables that are used in the empirical analysis.

Fig. 12
figure 12

Histograms of climate-related variables

The width of intervals is determined by the rule proposed by Freedman and Diaconis (1981), that is, \(2 L / n^{1/3}\) where L and n are the IQR length and the sample size, respectively. Each histogram is overlaid with the kernel density estimate that uses the Epanechnikov kernel. From this figure, the variation in the temperature is higher than those of other variables in terms of the unit we use.

Appendix F: Analysis of Other Parameters

The regression coefficients except for the intercept are summarized in Fig. 13.

Fig. 13
figure 13

Posterior summary I

The broader credible interval for \(\gamma \) is attributed to the larger number of prefectures of no production. Marginal posterior distributions for remaining parameters \(\delta _{0}\) and \(\tau \) are summarized in Fig. 14.

Fig. 14
figure 14

Posterior summary II

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hibiki, A., Miyawaki, K. A Bayesian Analysis of Vegetable Production in Japan. JABES (2024). https://doi.org/10.1007/s13253-024-00633-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13253-024-00633-x

Keywords

Navigation