Log in

Extremophiles: the species that evolve and survive under hostile conditions

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

(Modified from Kato et al. 1998; Orellana et al. 2018; MicroSoc 2022; NIH 2022)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data availability is not applicable.

References

  • Achberger AM, Christner BC, Michaud AB et al (2016) Microbial Community Structure of Subglacial Lake Whillans. West Antarctica Front Microbiol 22(7):1457

    Google Scholar 

  • Aguilera A (2013) Eukaryotic organisms in extreme acidic environments the Rio Tinto Case. Life 3:363–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajeje SB, Hu Y, Song G et al (2021) Thermostable cellulases/xylanases from thermophilic and hyperthermophilic microorganisms: current perspective. Front Bioeng Biotechnol 9:794304

    Article  PubMed  PubMed Central  Google Scholar 

  • Albers SV, van de Vossenberg JL, Driessen AJ, Konings WN (2000) Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:D813–D820

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, van de Vossenberg JL, Driessen AJ, Konings WN (2001) Bioenergetics and solute uptake under extreme conditions. Extremophiles 5:285–294

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Amils R, Fernandez-Remolar D, The IPBSL Team (2014) Rio Tinto: a geochemical and mineralogical terrestrial analogue of Mars. Life 4:511–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin K, Tranchimand S, Benvegnu T et al (2021) Glycoside hydrolases and glycosyltransferases from hyperthermophilic Archaea: insights on their characteristics and applications in biotechnology. Biomolecules 11:1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Basu B (2022) The radiophiles of Deinococcaceae family: resourceful microbes for innovative biotechnological applications. Curr Res Microb Sci 3:100153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellenberg S, Salas B, Ganji S et al (2021) Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic mineral-oxidizing leptospirilli. Sci Rep 11:16275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender GR, Marquis RE (1985) Spore heat resistance and specific mineralization. Appl Environ Microbiol 50:1415–1421

    Article  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8:95. https://doi.org/10.1186/s40643-021-00447-6

    Article  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S et al (1997) Pyrolobus fumarii gen, and sp, nov, represents a novel group of Archaea extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Bogdanov M, Mileykovskaya E, Dowhan W (2008) Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem 49:197–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Bölter M (2004) Ecophysiology of psychrophilic and psychrotolerant microorganisms. Cell Mol Biol (Noisy-le-grand) 50:563–573

    PubMed  Google Scholar 

  • Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16:20774–20840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouacem K, Amziane-Touazi M, Ben Hania W et al (2022) Isolation and characterization of moderately thermophilic aerobic cultivable bacteria from Hammam Righa Hot Spring (Algeria): description of their hydrolytic capacities. Algerian J Environ Sci Technol 8:2524–2536

    CAS  Google Scholar 

  • Bowman JP, McCammon SA, Lewis T et al (1998) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology (Reading) 144: 1601–1609.

  • Brinkmeyer R, Glöckner F-O, Helmke E (2004) Predominance of β-proteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49:1013–1021

    Article  Google Scholar 

  • Brock TD (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks BW, Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam, nov., and Deinococcus gen, nov., including five species. Int J Syst Bacteriol 31:353–360

    Article  Google Scholar 

  • Bueno de Mesquita CP, Zhou J, Theroux SM, Tringe SG (2021) Methanogenesis and salt tolerance genes of a novel halophilic Methanosarcinaceae metagenome-assembled genome from a former solar saltern. Genes 12:1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callac N, Oger P, Lesongeur F et al (2016) Pyrococcus kukulkanii sp, nov, a hyperthermophilic piezophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 66:3142–3149

    Article  CAS  PubMed  Google Scholar 

  • Canganella F, Wiegel J (2014) Anaerobic Thermophiles. Life 4:77–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Canganella F, Gonzalez JM, Yanagibayashim M et al (1997) Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 168:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cardona C, Gil-Cruz F, Franco-Marín L et al (2021) Volcanic activity accompanying the emplacement of dacitic lava domes and effusion of lava flows at Nevados de Chillán Volcanic Complex – Chilean Andes (2012) to (2020). J Volcanol Geother Res 420:107409

    Article  CAS  Google Scholar 

  • Cariello NF, Swenberg JA, Skopek TR (1991) Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 19:4193–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra P, Enespa Singh R, Arora PK (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 19:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BC, Kolb VM (2020) Macrobiont: cradle for the origin of life and creation of a biosphere. Life 10:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Coker JA (2016) Extremophiles and biotechnology: current uses and prospects. F1000Res 5:396

    Article  Google Scholar 

  • Coker JA (2019) Recent advances in understanding extremophiles. F1000Res 8:F1000 Faculty Rev-1917

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cono V, Smedile F, Crisafi F et al (2022) Wintertime simulations induce changes in the structure diversity and function of antarctic sea ice-associated microbial communities. Microorganisms 10:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook GM, Russell JB, Reichert A, Wiegel J (1996) The Intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62(12):4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95:1205–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuecas A, Cruces J, Galisteo-Lopex JF et al (2016) Cellular viscosity in prokaryotes and thermal stability of low molecular weight biomolecules. Biophy J 111:875–882

    Article  CAS  Google Scholar 

  • Crowe MA, Power JF, Morgan XC et al (2014) Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Microbiol 64:220–227

    Article  CAS  PubMed  Google Scholar 

  • Cuecas A, Portillo MC, Kanoksilapatham W, Gonzalez JM (2014) Bacterial distribution along a 50 ºC temperature gradient reveals a parceled out hot spring environment. Microb Ecol 68:729–739

    Article  CAS  PubMed  Google Scholar 

  • Dalmaso GZ, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damer B, Deamer D (2020) The hot spring hypothesis for an origin of life. Astrobiology 20:429–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57:250–264

    Article  CAS  PubMed  Google Scholar 

  • de Souza PM, de Oliveira MP (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding J, Zhang Y, Wang H et al (2017) Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading southwest Indian ridge. Front Microbiol 8:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114

    Article  CAS  PubMed  Google Scholar 

  • Driks A, Eichenberger P (2016) The bacterial spore: from molecules to systems. Wiley, Washington, DC, pp 1–236

    Book  Google Scholar 

  • Dutta B, Bandopadhyay R (2022) Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef Univ J Basic Appl Sci 11:75

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Fallal A, Dobara MA, El-Sayed A, and Omar N (2012) Starch and microbial α-amylases: from concepts to biotechnological applications. In: (Ed.) Carbohydrates—Comprehensive Studies on Glycobiology and Glycotechnology. IntechOpen. https://doi.org/10.5772/51571

  • Erauso G, Reysenbach AL, Godfroy A et al (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Escuder-Rodríguez JJ, DeCastro ME, Cerdán ME et al (2018) Cellulases from thermophiles found by metagenomics. Microorganisms 6:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Etten JV, Cho CH, Joon HS, Bhattacharya D (2022) Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin Cell Dev Biol. https://doi.org/10.1016/jsemcdb(2022)03007

    Article  PubMed  Google Scholar 

  • Fang J, Kato C, Runko GM et al (2017) Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~15 to 24 km-deep coal-bearing sediments below the ocean floor. Front Microbiol 8:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Fendrihan S, Legat A, Pfaffenhuemer M et al (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotech 5:203–218

    Article  CAS  Google Scholar 

  • Filipović A (2020) Water plant and soil relation under stress situations. In: Meena RS, Datta R (eds) Soil moisture importance. IntechOpen https://doi.org/10.5772/intechopen93528

  • Franco-Duarte R, Černáková L, Kadam S et al (2019) Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms 7:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Qu L, Du G (2021) Bacterial and archaeal communities in deep sea waters near the Ninetyeast Ridge in Indian Ocean. J Oceanol Limnol 39:582–597

    Article  CAS  Google Scholar 

  • Gao X, Kong JE, Zhu H, Mao B, Cui S, Zhao J (2022) Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 132(2):802–821

    Article  CAS  PubMed  Google Scholar 

  • Garrison DL, Sullivan CW, Ackley SF (1986) Sea Ice microbial communities in Antarctica. BioSci 36:243–250

    Article  Google Scholar 

  • Gaughran ERL (1947) The saturation of bacterial lipids as a function of temperature. J Bacteriol 53:506–509

    CAS  PubMed  Google Scholar 

  • Gavande PV, Basak A, Sen S et al (2021) Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerisation. Sci Rep 11:3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms In: Smith I, Slepecky RA, Setlow P (eds) Regulation of Prokaryotic Development. American Society for Microbiology Washington DC, pp43–63

  • Gonzalez JM (2018) Molecular tunnels in enzymes and thermophily: a case study on the relationship to growth temperature. Microorganisms 6:1–10

    Article  CAS  Google Scholar 

  • Gonzalez JM, Masuchi Y, Robb FT et al (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    Article  CAS  PubMed  Google Scholar 

  • Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., Nonpigmented, Psychrophilic Gas Vacuolate Bacteria from Polar Sea Ice and Water. Syst Appl Microbiol 20:356–365

    Article  Google Scholar 

  • Gunda GKT, Champatiray PK, Chauhan M (2021) Modelling of volcanic ash with HYSPLIT and satellite observations: a case study of the (2018) Barren Island volcano eruption event Andaman Territory India. Curr Sci 121:529–538

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42:353–375

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Wang RY, Kang JX (2021) Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nat Commun 12:5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Khanna S (2019) Alkaliphilic cyanobacteria: a review on diversity, ecology and applications. J Appl Phycol 31(3):1353–1368

    Google Scholar 

  • Harding T, Brown MW, Simpson AG, Roger AJ (2016) Osmoadaptative strategy and its molecular signature in obligately halophilic heterotrophic protists. Genome Biol Evol 8:2241–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich S, Schippers A (2021) Distribution of acidophilic microorganisms in natural and man-made acidic environments. Curr Issues Mol Biol 40:25–48

    Article  PubMed  Google Scholar 

  • Hirota K, Miura C, Motomura N (2019) Isolation and identification of bacteria from high-temperature compost at temperatures exceeding 90 ºC. Afr J Microbiol Res 13:134–144

    Article  CAS  Google Scholar 

  • Holm NG, Cairns-Smith AG, Daniel RM et al (1992) Marine hydrothermal systems and the origin of life: future research. Orig Life Evol Biosph 22(1–4):181–242

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, Tokyo

    Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikoshi K (2004) Alkaliphiles. Proc Jpn Acad Ser B Phys Biol Sci 80(4):166–178

    Article  CAS  PubMed Central  Google Scholar 

  • Huang R, Pan M, Wan C, Shah NP, Tao X, Wei H (2016) Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress. J Dairy Sci 99:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Chuvochina M, Oren A (2021) Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J 15:1879–1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichiye T (2018) Enzymes from piezophiles. Semin Cell Dev Biol 84:138–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irgens RL, Suzuki I, Staley JT (1989) Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:261–265

    Article  Google Scholar 

  • Irgens RL, Gosink JJ, and Staley JT (1996) Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46(3): 822–826

  • Jacob JH, Hussein EI, Shakhatreh MAK, Cornelison CT (2017) Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing. Microbiol Open 6:e00500

    Article  Google Scholar 

  • Jaenicke R (1996) Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. FASEB J 10:84–92

    Article  CAS  PubMed  Google Scholar 

  • Joshi JB, Priyadharshini R, Uthandi S (2022) Glycosyl hydrolase 11 (xynA) gene with xylanase activity from thermophilic bacteria isolated from thermal springs. Microb Cell Fact 21:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial Activity at − 2 to − 20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge K, Christner B, Staley JT (2011) Diversity of Psychrophilic Bacteria from Sea Ice—and Glacial Ice Communities In: Horikoshi K (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_39

  • Kajla S, Kumari R, Nagi GK (2022) Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 204:149

    Article  CAS  PubMed  Google Scholar 

  • Kashyap AK, Dubey SK (2022) Jain BP (2022) 1-Cyanobacterial diversity concerning the extreme environment and their bioprospecting. In: Singh P, Fillat M, Kumar A (eds) Cyanobacterial lifestyle and its applications in biotechnology. Academic Press, pp 1–22

    Google Scholar 

  • Kates MM, Moldoveanu NM, Stewart LC (1993) On the revised structure of the major phospholipid of Halobacterium salinarium. BiochimBiophysActa 1169:46–53

    CAS  Google Scholar 

  • Kato C (1999) Barophiles (Piezophiles) In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea. Environments. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67925-7_5

  • Kato C, Takai (2000) Microbial diversity of deep-sea extremophiles--Piezophiles Hyperthermophiles and subsurface microorganisms. Biol Sci Space 14: 341–52

  • Kato C, Li L, Nogi Y et al (1998) Extremely barophilic bacteria isolated from the Mariana Trench Challenger Deep at a depth of 11000 meters. Appl Environ Microbiol 64:1510–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay AR (2017) How cells can control their size by pum** ions. Front Cell Dev Biol 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Kengen S (2017) Pyrococcus furiosus 30 years on. Micro Biotechnol 10:1441–1444

    Article  Google Scholar 

  • Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA (1998) Tindallia magadii gen gen. nov. sp. Novnov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 37:94–100

    Article  CAS  PubMed  Google Scholar 

  • Khalil A (2011) Screening and characterization of thermophilic bacteria (lipase cellulase and amylase producers) from hot springs in Saudi Arabia. J Food Agri Environ 9:672–675

    Google Scholar 

  • Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42(4): 356–361

    Article  PubMed  Google Scholar 

  • Kim J, Chhetri G, Kim I et al (2020) Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 70:2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Kochhar N, Kavya IK, Shrivastava S et al (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microb Sci 3:100134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236

    Article  CAS  PubMed  Google Scholar 

  • Konings WN, Albers SV, Koning S et al (2022) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81(1–4):61–72

    Google Scholar 

  • Kumar R, Sood U, Kaur J et al (2021) The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 15:110–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar Verma D, Gddoa T, Al-Sahlany S et al (2022) Recent trends in microbial flavour Compounds: A review on Chemistry synthesis mechanism and their application in food. Saudi J Biol Sci 29:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Lebre P, De Maayer P, Cowan D (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15:285–296

    Article  CAS  PubMed  Google Scholar 

  • León MJ, Hoffmann T, Sánchez-Porro C et al (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front Microbiol 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Leston S, Nunes M, Rosa J et al (2014) Prospection, collection, and preservation of marine samples. In: Rocha-Santos T, Duarte AC (eds) Analysis of marine samples in search of bioactive compounds, vol 65. Elsevier, pp 15–34

    Chapter  Google Scholar 

  • Li H, Yang Q, Li J et al (2015) The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field. China Sci Rep 5:17056

    Article  CAS  PubMed  Google Scholar 

  • Li YT, Tian Y, Tian H et al (2018) A review on bacteriorhodopsin-based bioelectronic devices. Sensors 18:1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew KJ, Liang CH, Lau YT et al (2022) Thermophiles and carbohydrate–active enzymes (CAZymes) in bioflm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Sci Rep 12:2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang C, Wang Z et al (2021) Pleiotropic roles of late embryogenesis abundant proteins of Deinococcus radiodurans against oxidation and desiccation. Comput Struct Biotechnol J 19:3407–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen T, Cui X et al (2022) Sphingomonas radiodurans sp, nov., a novel radiation-resistant bacterium isolated from the north slope of Mount Everest. Int J Syst Evol Microbiol 72:005312

    Article  CAS  Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MWW et al (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108:1–6

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Ding J, Wang H, Wan J, Chen Y, Liang L, Yu T, Wang Y, Wang F (2022) Isolation of a Novel Thermophilic Methanogen and the Evolutionary History of the Class Methanobacteria. Biol 11(10):1514

    Article  CAS  Google Scholar 

  • Macedo MWFS, Cunha N, Carneiro JA (2021) Marine organisms as a rich source of biologically active peptides. Front Mar Sci 8:667764

    Article  Google Scholar 

  • MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Madigan MM, Bender KS, Buckley DH (2020) Brock biology of microorganisms, 16th edn. Pearson

  • Mani K, Taib N, Hugoni M (2020) Transient dynamics of Archaea and Bacteria in sediments and brine across a salinity gradient in a Solar Saltern of Goa. India Front Microbiol 11:1891

    Article  PubMed  Google Scholar 

  • Marathe IA, Lai SM, Zahurancik WJ (2021) Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Res 49:9444–9458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguet E, Forterre P (1998) Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2:115–122

    Article  CAS  PubMed  Google Scholar 

  • Marsh WS, Heise BW, Krzmarzick MJ (2021) Isolation and characterization of a halophilic Modicisalibacter sp. strain Wilcox from produced water. Sci Rep 11:6943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, McMinn A (2018) Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol 17(1):1–16

    Article  Google Scholar 

  • Martins A, Tenreiro T, Andrade G et al (2013) Photoprotective bioactivity present in a unique marine bacteria collection from portuguese deep sea hydrothermal vents. Mar Drugs 11:1506–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta D, Satyanarayana T (2016) Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol 7:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Merino N, Aronson HS, Bojanova DP (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Merlino G, Barozzi A, Michoud G (2018) Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol 94:fiy085

    Article  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MicroSoc (2022) Microbiology Society. https://www.microbiologyresearchorg/ assessed on (2022)-07–23 at 11:32:04

  • Miura M, Tanigawa C, Fujii Y, Kaneko S (2013) Comparison of six commercially-available DNA polymerases for direct PCR. Rev Inst Med Trop Sao Paulo 55:401–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammad BT, Al Daghistani HI, Jaouani A et al (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952

    Article  PubMed  PubMed Central  Google Scholar 

  • Monte J, Ribeiro C, Parreira C et al (2020) Biorefinery of Dunaliella salina: sustainable recovery of carotenoids polar lipids and glycerol. Biores Technol 297:122509

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mroczkowski BS, Huvar A, Lernhardt W et al (1994) Secretion of thermostable DNA polymerase using a novel baculovirus vector. J Biol Chem 269:13522–13528

    Article  CAS  PubMed  Google Scholar 

  • Muntyan MS, Viryasov MB, Sorokin DY, Skulachev VP (2022) Sodium energetic cycle in the natronophilic bacterium Thioalkalivibrio versutus. Int J Mol Sci 23:1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao R, Kojima K (2017) Ion transporters in the thylakoid membrane of cyanobacteria–an unexpected diversity of candidates for studies on photosynthesis. Photosynth Res 133(1–3):119–134

    Google Scholar 

  • Namsaraev XB, Zavarzin GA (2016) Alkaliphilic cyanobacteria: diversity, ecology and applications. Microbiol 85(1):1–17

    Google Scholar 

  • Narsing Rao MP, Liu L, Jiao JY et al (2018) Hot springs of India: occurrence and microbial diversity. In: Egamberdieva D, Birkeland, NK, Panosyan H, Li WJ (eds) Microorganisms for sustainability. Singapore, Springer, vol 8, pp 29–55

  • Narsing Rao MP, Dong ZY, Luo ZH et al (2021) Physicochemical and microbial diversity analyses of Indian hot springs. Front Microbiol 12:627200

    Article  PubMed  PubMed Central  Google Scholar 

  • Narsing Rao MP, Luo ZH, Dong ZY et al (2022) Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles. Environ Res 209:112888

    Article  CAS  PubMed  Google Scholar 

  • Nechita P, Mirela R, Ciolacu F (2021) Renewable material with potential properties for food packaging applications. Sustainability 13:13504

    Article  CAS  Google Scholar 

  • Newsome L, Falagán C (2021) The Microbiology of metal mine waste: bioremediation applications and implications for planetary health. Geohealth 5:e(2020)GH000380

    Article  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G et al (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NIH (2022) National Institutes of Health. https://www.nihgov/ assessed on (2022)-07-23 at 11:33:50

  • Niimura Y, Koh E, Yanagida F et al (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic spore forming Xylan-digesting bacterium which lacks cytochrome quinone and catalase. Int J Syst Bacteriol 40:297–301

    Article  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissenbaum A (1975) The microbiology and biogeochemistry of the Dead Sea. Microbial Ecol 2:139–161

    Article  CAS  Google Scholar 

  • Nobel PS (2014) Achievable bioproducts from cyanobacteria: their use in agriculture, industry and medicine. In: Microalgae-based biofuels and bioproducts, pp. 213–234. Woodhead Publishing. https://doi.org/10.1533/9780857097410.2.213

  • Nogi Y, Kato C, Horikoshi K (1998) Moritella japonica sp novsp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295

    Article  CAS  PubMed  Google Scholar 

  • Novitsky TJ, Chan M, Himes RH, Akagi JM (1974) Effect of temperature on the growth and cell wall chemistry of a facultative thermophilic Bacillus. J Bacteriol 117:858–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NPA (2022) National Park Arkansas https://www.npsgov/hosp/learn/thermophileshtm assessed (2022)-07-02 10:41:23

  • Orellana R, Macaya C, Bravo G et al (2018) Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol 9:2309

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2014) Halophilic archaea on Earth and in space: growth and survival under extreme conditions. Phil Trans R Soc A 372:20140194

    Article  PubMed  Google Scholar 

  • Oren A (2015) Cyanobacterial diversity in extreme environments. In: Ecology of Cyanobacteria II, pp. 591–611. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7412-8_21

  • Papadimitriou K, Alegría Á, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zúñiga M, Tsakalidou E, Kok J (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80(3):837–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Na Y, Kim J et al (2017) Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci Biotechnol 27:299–312

    PubMed  PubMed Central  Google Scholar 

  • Park Y, Chang Y, Kim MK (2022) Hymenobacter armeniacus sp. nov. and Hymenobacter montanus sp. nov. two radiation-resistant bacteria from soil. Int J Syst Evol Microbiol 72:005267.

  • Penhallurick RW, Durnal MD, Harold A, Ichiye T (2021) Adaptations for pressure and temperature in dihydrofolate reductases. Microorganisms 9:1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfumo A, Freiherr von Sass GJ, Nordmann EL et al (2020) Discovery and characterization of a new cold-active protease from an extremophilic bacterium via comparative genome analysis and in vitro expression. Front Microbiol 11:881

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham JV, Yilma MA, Feliz A et al (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Pinel I, Biškauskaitė R, Pal’ová E et al (2021) Assessment of the impact of temperature on biofilm composition with a laboratory heat exchanger module. Microorganisms 9:1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poli A, Finore I, Romano I et al (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Prajapati VS, Trivedi UB, Patel KC (2014) Kinetic and thermodynamic characterization of glucoamylase from Colletotrichum sp KCP1. Indian J Microbiol 54:87–93

    Article  CAS  PubMed  Google Scholar 

  • Rabee AE, Sayed Alahl A, Lamara M, Ishaq SL (2022) Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS ONE 17:e0262304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Wong KS, Jane J et al (1998) Characterization of SU1 isoamylase a determinant of storage starch structure in maize. Plant Physiol 117:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL (2021) Extremophile enzymes for food additives and fertilizers. Microb Biotechnol. https://doi.org/10.1111/1751-791513944

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    Article  CAS  Google Scholar 

  • Räsänen LA, Elväng AM, Jansson J, Lindström K (2001) Effect of heat stress on cell activity and cell morphology of the tropical rhizobium Sinorhizobium arboris. FEMS Microbiol Ecol 34:267–278

    Article  PubMed  Google Scholar 

  • Razzaq A, Shamsi S, Ali A et al (2019) Microbial proteases applications. Front Bioeng Biotechnol 7:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Rekadwad B, Gonzalez JM (2019) Multidisciplinary involvement and potential of thermophiles. Folia Microbiol 64:389–406

    Article  CAS  Google Scholar 

  • Rekadwad B, Pathak A (2016) First report on revelatory prokaryotic diversity of Unkeshwar hot spring (India) having biotechnological potential. Indian J Biotechnol 15:195–200

    CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotter A, Barbier M, Bertoni F et al (2021) The essentials of marine biotechnology. Front Marine Sci 8:629629

    Article  Google Scholar 

  • Royter M, Schmidt M, Elend C (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp tengcongensis. Extremophiles 13:769–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rust P, Ekmekcioglu C (2016) Impact of salt intake on the pathogenesis and treatment of hypertension. In: Islam MS (eds) Hypertension: from basic research to clinical practice. Advances in Experimental Medicine and Biology Vol 956, Springer, Cham. https://doi.org/10.1007/5584_(2016)_147

  • Saeedi P, Moosaabadi JM, Sebtahmadi SS et al (2012) Potential applications of bacteriorhodopsin mutants. Bioengineered 3:326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghatelyan A, Margaryan A, Panosyan H, Birkeland NK (2021) Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-Karabakh: a review. Microorganisms 9:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha R, Bhattacharya D, Mukhopadhyay M (2022) Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: a comprehensive review. Energy Convers Manag X 13:100153

    CAS  Google Scholar 

  • Sahonero-Canavesi DX, Villanueva L, Bale NJ et al (2022) Changes in the distribution of membrane lipids during growth of Thermotoga maritima at different temperatures: indications for the potential mechanism of biosynthesis of ether-bound diabolic acid (membrane-spanning) lipids. Appl Environ Microbiol 88:e0176321

    Article  PubMed  Google Scholar 

  • Salano OA, Makonde HM, Kasili RW et al (2017) Diversity and distribution of fungal communities within the hot springs of soda lakes in the Kenyan rift valley. Afri J Microbiol Res 11:764–775

    CAS  Google Scholar 

  • Santomartino R, Zea L, Cockell CS (2022) The smallest space miners: principles of space biomining. Extremophiles 26:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot Springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123

    Article  PubMed  PubMed Central  Google Scholar 

  • Setlow P (2000) Resistance of bacterial spores. In: Storz G, Hengge-Aronis R (eds) Bacterial Stress Responses American Society for Microbiology, Washington DC, pp 217–230

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation heat and chemicals. J Appl Microbiol 101:514–525

    Article  CAS  PubMed  Google Scholar 

  • Setlow P (2014) Spore resistance properties. Microbiol Spectr 2:5

    Article  Google Scholar 

  • Sharma A, Kawarabayashi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Sievert SM, Vetriani C (2012) Chemoautotrophy at deep-sea vents: past present and future. Oceanography 25:218–233

    Article  Google Scholar 

  • Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature pH and pressure. Extremophiles 21:651–67099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Jain K, Desai C et al (2019) Chapter 18—microbial community dynamics of extremophiles/extreme environment. In: Microbial Diversity in the Genomic Era, pp 323–332. https://doi.org/10.1016/B978-0-12-814849-500018-6

  • Šnajder M, Carrillo Rincón AF, Magdevska V (2019) Extracellular production of the engineered thermostable protease pernisine from Aeropyrum pernix K1 in Streptomyces rimosus. Microb Cell Fact 18:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Makarova KS, Abbas B et al (2017) Discovery of extremely halophilic methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Yakimov M, Messina E, Merkel AY, Bale NJ, Sinninghe Damste JS (2019) Natronolimnobius sulfurireducens sp. nov. and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Biol 69:2662–2673

    Article  CAS  Google Scholar 

  • Steenbergen CLM, Korthals HJ, van Nes M (1987) Ecological observations on phototrophic sulfur bacteria and the role of these bacteria in the sulfur cycle of monomictic Lake Vechten (The Netherlands). Acta Academiae Aboensis 47:97–115

    Google Scholar 

  • Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452(1–2):22–25

    Article  CAS  PubMed  Google Scholar 

  • Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM (2018) Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 42(5):543–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi BP, Martin WF, Carbone V et al (2021) Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. FEMS Microbes 2:xtab012

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzina NE, Sorokin VV, Polivtseva VN et al (2022) From rest to growth: life collisions of Gordonia polyisoprenivorans 135. Microorganisms 10:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sysoev M, Grötzinger SW, Renn D et al (2021) Bioprospecting of novel extremozymes from Prokaryotes—the advent of culture-independent methods. Front Microbiol 12:630013

    Article  PubMed  PubMed Central  Google Scholar 

  • Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  • Tank M, Blümel M, Imhoff JF (2011) Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by puf LM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol Ecol 78:428–438

    Article  CAS  PubMed  Google Scholar 

  • Tapia C, López B, Astuya A et al (2021) Antiproliferative activity of carotenoid pigments produced by extremophile bacteria. Nat Prod Res 35:4638–4642

    Article  CAS  PubMed  Google Scholar 

  • Tendulkar S, Hattiholi A, Chavadar M, Dodamani S (2021) Psychrophiles: a journey of hope. J Biosci 46:64

    Article  CAS  PubMed  Google Scholar 

  • Tetzner DR, Thomas ER, Allen CS, Piermattei A (2021) Evidence of recent active volcanism in the Balleny Islands (Antarctica) from ice core records. J Geophy Res Atmos 126:e2021JD035095

    Article  Google Scholar 

  • Tian Y, Kong BH, Liu SL (2013) Burkholderia grimmiae sp novsp. nov., isolated from a xerophilous moss (Grimmia montana). Int J Syst Evol Microbiol 63:2108–2113

    Article  CAS  PubMed  Google Scholar 

  • Turvey MW, Gabriel KN, Lee W (2022) Single-molecule Taq DNA polymerase dynamics. Sci Adv 8:eabl3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrih NP, Gmajner D, Raspor P (2009) Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl Microbiol Biotechnol 84:249–260

    Article  CAS  PubMed  Google Scholar 

  • van der Maarel MJ, van der Veen B, Uitdehaag JC (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • Varrella S, Tangherlini M, Corinaldesi C (2020) Deep Hypersaline Anoxic Basins as untapped reservoir of polyextremophilic prokaryotes of biotechnological interest. Mar Drugs 18:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavitsas K, Glekas PD, Hatzinikolaou DG (2022) Synthetic biology of thermophiles: taking bioengineering to the extremes? Appl Microbiol 2:165–174

    Article  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde C, Giordano D, Bellas CM et al (2016) Polar marine microorganisms and climate change. Adv Microb Physiol 69:187–215

    Article  CAS  PubMed  Google Scholar 

  • Verma D (2021) Extremophilic prokaryotic endoxylanases: diversity applicability and molecular insights. Front Microbiol 12:728475

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma V, Meghawanshi GK, Kumar R (2021) Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie 182:23–36

    Article  CAS  PubMed  Google Scholar 

  • Vicente JB, Frazão C, Lamosa P, Santos H (2008) Calcium and urea as modulators of Synechocystis sp. PCC 6803 urease activity. Appl. Environ. Microbiol. 74(1):221–228

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieille C, Burdette DS, Zeikus JG (1996) Thermozymes. Biotechnol Annu Rev 2:1–83

    Article  CAS  PubMed  Google Scholar 

  • von Hegner I (2020) Extremophiles: a special or general case in the search for extra-terrestrial life? Extremophiles 24:167–175

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby AE, Hayes PK, Boje R et al (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol 136:407–417

    Article  PubMed  Google Scholar 

  • Walter R, Simmons WH, Yoshimoto T (1980) Proline specific endo- and exopeptidases. Mol Cell Biochem 30:111–127

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hou W, Dong H et al (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS ONE 8:e62901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu Y, Liu H et al (2022) Recent advances and application of whole genome amplification in molecular diagnosis and medicine. Med Comm 3:e116

    CAS  Google Scholar 

  • Wang JL, Dragone NB, Avard G, Hynek BM (2022) Microbial survival in an extreme martian analog ecosystem: Poás Volcano Costa Rica. Front Astron Space Sci 9:817900

    Article  Google Scholar 

  • Wei C, Sun D, Yuan W et al (2022) Metagenomics revealing molecular profiling of microbial community structure and metabolic capacity in Bamucuo Tibet. bioRxiv. https://doi.org/10.1101/(2022)0118476867

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139(3):800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Zheng S, Pedroso MM et al (2018) Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnol Biofuels 11:20

    Article  PubMed  PubMed Central  Google Scholar 

  • **n H, Itoh T, Zhou P et al (2001) Natronobacterium nitratireducens sp novsp. nov., a aloalkaliphilic archaeon isolated from a soda lake in China. Int J Syst Evol Microbiol 51:1825–1829

    Article  CAS  PubMed  Google Scholar 

  • Xu X (2014) Ciliates in extreme environments. J Eukary Microbiol 61:410–418

    Article  Google Scholar 

  • Yang Y, Fang A, Feng K et al (2021) Mini-metagenome analysis of psychrophilic electroactive biofilms based on single cell sorting. Sci Total Environ 762:144328

    Article  CAS  PubMed  Google Scholar 

  • Yaroshenko G, Koulakov I, Al-Arifi N et al (2022) Structure of the magma plumbing system beneath Semisopochnoi Island (Aleutian Arc) inferred from seismic tomography. Sci Rep 12:10771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yıldırım A, Avci C (2022) A simple and efficient approach for the synthesis of cholesterol esters of long-chain saturated fatty acids by using Ph3P·SO3 as a versatile organocatalyst. Steroids 183:109011

    Article  PubMed  Google Scholar 

  • Yuan M, Zhang W, Dai S et al (2009) Deinococcus gobiensis sp novsp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59:1513–1517

    Article  CAS  PubMed  Google Scholar 

  • Yüce GH, Karatay SE, Aksu Z, Dönmez G (2021) Lithium (I) biofortified Dunaliella salina as a potential functional nutrition supplement. Algal Res 56:102257

    Article  Google Scholar 

  • Zeldes BM, Keller MW, Loder AJ et al (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Alain K, Shao Z (2021) Microorganisms from deep–sea hydrothermal vents. Mar Life Sci Technol 3:204–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zgonik V, Mulec J, Eleršek T et al (2021) Extremophilic Microorganisms in Central Europe. Microorganisms 9:2326

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zeng R, Labes A (2021) Editorial: marine microbial-derived molecules and their potential medical and cosmetic applications. Front Microbiol 12:706152

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J (2020) Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front Bioeng Biotechnol 8:483

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Key-Area Research and Development Program of Guangdong Province (2022B0202110001), National Natural Science Foundation of China (Nos: 31972856 and 32061143043) and Yenepoya (Deemed to be University), India (No. YU/SeedGrant/104-2021). All authors duly acknowledge Dr. Manik Prabhu Narsing Rao (former affiliation: Sun Yat-Sen University, Guangzhou 510275, PR China) for his advice during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Ethics declarations

Conflict of interest

The authors declare that they had no conflict of interest.

Ethical approval

This article does not contain any studies related to human participants or animals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekadwad, B., Li, WJ., Gonzalez, J.M. et al. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 13, 316 (2023). https://doi.org/10.1007/s13205-023-03733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03733-6

Keywords

Navigation