Log in

Soil microbiota community assembling in native plant species from Brazil’s legal Amazon

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Many endemic plant species from Brazil’s Legal Amazon present soil organisms in their rhizosphere. These organisms play a key role in the physiological traits, plant performance, and resistance against drought, and herbivory. Our aim here was to present a quantitative analysis of the arbuscular mycorrhizal fungi (AMF) species, and soil nematodes associated with endemic plant species from the Brazil’s Legal Amazon, Rio Branco, Acre. We found four main groups considering the similarities on soil microbiota community structure: i) T. cacao, M. flexuosa, and G. weberbaueri showed high AMF and soil nematode richness; ii) S. officinarum and V. unguiculata showed high herbivore nematode abundance and low Ambisporaceae and Claroideoglomeraceae sporulation; iii) H. brasiliensis and E. guineensis showed the low abundance of Gigasporaceae spores and lack of herbivore nematodes; and iv) E. precatoria showed the high abundance of A. colombiana, Monanchus, and Tripyla. The results of our study highlight the importance of considering endemic tree species as potential hosts for a solid and diverse soil food web on a sustainable way to improve soil ecology, root traits, and plant performance. Thus, long-term experiments considering these endemic tree species into agroforestry systems may exploit interesting results in tropical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarado-Herrejón M, Larsen J, Gavito ME, Jaramillo-López PF, Vestberg M, Martínez-Trujillo C-AY (2019) Relation between arbuscular mycorrhizal fungi, root-lesion nematodes and soil characteristics in maize agroecosystems. Appl Soil Ecol 135:1–8. https://doi.org/10.1016/j.apsoil.2018.10.019

    Article  Google Scholar 

  • Araujo ASF, Melo VMM, Pereira APA, Lopes ACA, Rocha SMB, Araujo FF, Mendes LW (2021) Arbuscular mycorrhizal community in soil from different Brazilian Cerrado physiognomies. Rhizosphere 19:100375. https://doi.org/10.1016/j.rhisph.2021.100375

    Article  Google Scholar 

  • Barbosa LS, Souza TAF, Lucena EO, Silva LJR, Laurindo LK, Nascimento GS, Santos D (2021) Arbuscular mycorrhizal fungi diversity and transpiratory rate in long-term field cover crop systems from tropical ecosystem, northeastern Brazil. Symbiosis.https://doi.org/10.1007/s13199-021-00805-0

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01068

  • Belay Z, Negash M, Kaseva J, Vestberg M, Kahiluoto H (2021) Native forests but not agroforestry systems preserve arbuscular mycorrhizal fungal species richness in southern Ethiopia. Mycorrhiza 30:749–759. https://doi.org/10.1007/s00572-020-00984-6

    Article  CAS  Google Scholar 

  • Beltran-Garcia MJ, Martínez-Rodríguez A, Olmos-Arriaga I, Valdes-Salas B, Mascio PD, White JF (2021) Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis. https://doi.org/10.1007/s13199-021-00787-z

  • Berger F, Gutjahr C (2021) Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr Opin Plant Biol 59. https://doi.org/10.1016/j.pbi.2020.101994

  • Bertola M, Ferrarini A, Visioli G (2021) Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omics approaches: a perspective for the environment. Food Qual Human Safety Microorganisms 9:1400. https://doi.org/10.3390/microorganisms9071400

    Article  CAS  Google Scholar 

  • Black CA (1965) Methods of soil analysis, part 2. In: Black CA (ed) Agronomy monograph, vol No. 9. American Society of Agronomy, Madison, pp 771–1572

  • Bonfim-Silva EM, Lima PCS, Soares DC, Liendro JV, Araújo TJS, Damasceno APAB (2020) Mineral, organic, and organomineral fertilization associated with base saturation in Vigna unguiculata cultivation. Int JVeg Sci. https://doi.org/10.1080/19315260.2020.1827115

  • Buchan D, Gebremikael MT, Ameloot N, Sleutel S, Neve S (2013) The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores. Soil Biol Biochem 60:142–155. https://doi.org/10.1016/j.soilbio.2013.01.022

    Article  CAS  Google Scholar 

  • Campos MAS (2020) Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne Nematodes: a sustainable alternative. Crop Prot 135. https://doi.org/10.1016/j.cropro.2020.105203

  • Celentano D, Rousseau GX, Paixão LS, Lourenço F, Cardozo EG, Rodrigues TO, Silva HR, Medina J, de Sousa TMC, Rocha AE, Rei FO (2020) Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of eastern Amazon, Brazil. Agrofor Syst 94:1781–1792. https://doi.org/10.1007/s10457-020-00496-4

    Article  Google Scholar 

  • Chaves SF, Gama MAP, Alves RM, de Oliveira RP, Pedroza Neto JL, Lima VMN (2020) Evaluation of physicochemical attributes of a yellow latosol under agroforestry system as compared to secondary forest in the eastern Amazon. Agrofor Syst 94:1903–1912. https://doi.org/10.1007/s10457-020-00513-6

    Article  Google Scholar 

  • Cheng X, Wu H, Zou Y, Wu Q, Kuca K (2021) Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2021.02.026

  • Chourasiya D, Gupta MM, Sahni S, Oehl F, Agnihotri R, Buade R, Maheshwar HS, Prakash A, Sharma MP (2021) Unravelling the AM fungal community for understanding its ecosystem resilience to changed climate in agroecosystems. Symbiosis. https://doi.org/10.1007/s13199-021-00761-9

  • Cruz RMS, Alberton O, Silva Lorencete M, Cruz GLS, Gasparotto-Junior A, Cardozo-Filho L, Souza SGH (2020) Phytochemistry of Cymbopogon citratus (DC) Stapf inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Ind Crop Prod 149. https://doi.org/10.1016/j.indcrop.2020.112340

  • da Costa HJA, Gurgel ESC, do Amaral DD, Vasconcelos LV, LGB R, Teodoro GS (2020) CSR ecological strategies, functional traits and trade-offs of woody species in Amazon sandplain forest. Flora 273:151710. https://doi.org/10.1016/j.flora.2020.151710

    Article  Google Scholar 

  • Dantas MA, Bona K, Vieira TB, Mews HA (2020) Assessing the fine-scale effects of bamboo dominance on litter dynamics in an Amazonian forest. For Ecol Manag 474:118391. https://doi.org/10.1016/j.foreco.2020.118391

    Article  Google Scholar 

  • de la Cruz-Ortiz AV, Alvarez-Lopeztello J, Robles C, Hernandez-Cuevas LV (2020) Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec isthmus (Oaxaca). Mexico Appl Soil Ecol 149:103519. https://doi.org/10.1016/j.apsoil.2020.103519

    Article  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12:370. https://doi.org/10.3390/d12100370

    Article  CAS  Google Scholar 

  • Djocgoue PF, Sima C, Minyaka E, Tassong SD, Njonzo-Nzo AS, Taffouo VD (2019) Influence of Gigaspora margarita and Acaulospora tuberculata on tolerance to Phytophthora megakarya in Theobroma cacao under plant nursery conditions. International journal of advance agricultural. Research. https://doi.org/10.33500/ijaar.2019.07.003

    Article  Google Scholar 

  • do Vale SML, Siviero A, Lessa LS, Mattar PL, do Vale PAA (2020) Biotechnological potential of endophytic bacteria of bamboo Guadua sp. for promotion of growth of micropropagated yam plants (Dioscorea rotundata Poir). AIMS Agricult Food 5(4):850–867. https://doi.org/10.3934/agrfood.2020.4.850

    Article  Google Scholar 

  • Domene X, Mattana S, Sánchez-Moreno S (2021) Biochar addition rate determines contrasting shifts in soil nematode trophic groups in outdoor mesocosms: an appraisal of underlying mechanisms. Appl Soil Ecol 158.https://doi.org/10.1016/j.apsoil.2020.103788

  • Ferreira BS, Santana MV, Macedo RS, Silva JO, Carneiro MAC, Rocha MR (2018) Co-occurrence patterns between plant-parasitic nematodes and arbuscular mycorrhizal fungi are driven by environmental factors. Agric Ecosyst Environ 265:54–61. https://doi.org/10.1016/j.agee.2018.05.020

    Article  Google Scholar 

  • Forstall-Sosa KS, Souza TAF, Lucena EO, da Silva SAI, Ferreira JTA, Silva TN, Santos D, Niemeyer JC (2020) Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia 76(3):907–917. https://doi.org/10.2478/s11756-020-00602-y

    Article  Google Scholar 

  • Furusawa A, Uehara T, Ikeda K, Sakai H, Tateishi Y, Sakai M, Nakaho K (2019) Ralstonia solanacearum colonization of tomato roots infected by Meloidogyne incognita. J Phytopathol 167:338–343. https://doi.org/10.1111/jph.12804

    Article  Google Scholar 

  • Gamalero E, Glick B (2020) The use of plant growth-promoting bacteria to prevent nematode damage to plants. Biology 9:381. https://doi.org/10.3390/biology9110381

    Article  CAS  PubMed Central  Google Scholar 

  • Gan H, Wickings K (2020) Root herbivory and soil carbon cycling: shedding “green” light onto a “brown” world. Soil Biol Biochem 150. https://doi.org/10.1016/j.soilbio.2020.107972

  • Gao D, Moreira-Grez B, Wang K, Zhang W, **ao S, Wang W, Chen H, Zhao J (2021a) Effects of ecosystem disturbance on nematode communities in calcareous and red soils: comparison of taxonomic methods. Soil Biol Biochem 155. https://doi.org/10.1016/j.soilbio.2021.108162

  • Gao X, Lv J, Guo C, Hu A, Wu X, Li Z (2021b) Species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Hevea brasiliensis in Hainan Island. China Phyton-Int J Exp Botany 80(179-192):10.32604/phyton.2021.012968

    Google Scholar 

  • Gebremikael MT, Steel H, Buchan D, Bert W, Neve S (2016) Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci Rep 6. https://doi.org/10.1038/srep32862

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46(2):235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241. https://doi.org/10.2307/2992183

    Article  Google Scholar 

  • Goto BT, Silva GA, de Assis DMA, Silva DK, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132. https://doi.org/10.5248/119.117

    Article  Google Scholar 

  • Han M, Sun L, Gan D, Fu L, Zhu B (2020) Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biol Biochem 151:108019. https://doi.org/10.1016/j.soilbio.2020.108019

    Article  CAS  Google Scholar 

  • IITA (1979) Selected methods for soil and plant analysis. IITA Manual Services, Ibadan, Nigeria

    Google Scholar 

  • Jayakumar J, Ganapathy S (2020) Resistance of sugarcane clones against root knot nematode, Meloidogyne incognita and lesion nematode, Pratylenchus zeae. J Entomol Zool Stud 8:45–48

    Google Scholar 

  • Jenkins WR (1964) A rapid centrifugation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Kandel SL, Smiley RW, Garland-Campbell K, Elling AA, Huggins D, Paulitz TC (2018) Spatial distribution of root lesion nematodes (Pratylenchus spp.) in a long-term no-till crop** system and their relationship with soil and landscape properties. Eur J Plant Pathol 150:1011–1021. https://doi.org/10.1007/s10658-017-1341-3

    Article  Google Scholar 

  • Karuri H (2021) Nematode community structure and functional guilds differ in tea fields and tropical forest. Geoderma 392. https://doi.org/10.1016/j.geoderma.2021.115006

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Kou X, Ma N, Zhang X, **e H, Zhang X, Wu Z, Liang W, Li Q, Ferris H (2020) Frequency of Stover mulching but not amount regulates the decomposition pathways of soil micro-food webs in a no-tillage system. Soil Biol Biochem 144. https://doi.org/10.1016/j.soilbio.2020.107789

  • Laurindo LK, Souza TAF, da Silva LJR, Casal TB, Pires KJC, Kormann, Schmitt DE, Siminski A (2021) Arbuscular mycorrhizal fungal community assembly in agroforestry systems from the southern Brazil. Biologia 76:1099–1107. https://doi.org/10.1007/s11756-021-00700-5

    Article  CAS  Google Scholar 

  • Lazcano C, Deniston-Sheets HM, Stubler C, Hodson AK, Watts KR, Afriyie P, Casassa LF, Peterson JCD (2021) Soil management induced shifts in nematode food webs within a Mediterranean vineyard in the central coast of California (USA). Appl Soil Ecol 157. https://doi.org/10.1016/j.apsoil.2020.103756

  • Lourenço Junior J, Newman EA, Ventura JA, Milanez RD, Thomaz LD, Wandekonen DT, Enquist BJ (2021) Soil-associated drivers of plant traits and functional composition in Atlantic Forest coastal tree communities. Ecosphere 12:e03629

    Google Scholar 

  • Lucena EO, Souza TAF, da Silva SIA, Kormann S, da Silva LJR, Laurindo LK, Forstall-Sosa KS, de Andrade LA (2021) Soil biota community composition as affected by Cryptostegia madagascariensis invasion in a tropical Cambisol from North-Eastern Brazil. Trop Ecol. https://doi.org/10.1007/s42965-021-00177-y

  • Luquini L, Barbosa D, Haddad F, Ferreira CF, Amorim EP (2019) Nematode survey and biochemical characterization of Meloidogyne spp. in a main banana production area in Brazil. Crop Prot 117:94–99. https://doi.org/10.1016/j.cropro.2018.11.018

    Article  CAS  Google Scholar 

  • Maia RS, Vasconcelos SS, Viana-Junior AB, Castellani DC, Kato OR (2021) Oil palm (Elaeis guineensis) shows higher mycorrhizal colonization when planted in agroforestry than in monoculture. Agrofor Syst 95:731–740. https://doi.org/10.1007/s10457-021-00627-5

    Article  Google Scholar 

  • Maina S, Karuri H, Ng’endo RN (2020) Nematode metabolic footprints, ecological and functional indices in tropical maize-beans agro-ecosystems under different farming practices. Acta Oecol 108. https://doi.org/10.1016/j.actao.2020.103622

  • Martin T, Sprunger CD (2021) A meta-analysis of nematode community composition across soil aggregates: implications for soil carbon dynamics. Appl Soil Ecol 168. https://doi.org/10.1016/j.apsoil.2021.104143

  • Martín-Robles N, García-Palacios P, Rodríguez M, Rico D, Vigo R, Sánchez-Moreno S, Deyn GBD, Milla R (2020) Crops and their wild progenitors recruit beneficial and detrimental soil biota in opposing ways. Plant Soil 456:159–173. https://doi.org/10.1007/s11104-020-04703-0

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JÁ (1990) Anew method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  CAS  PubMed  Google Scholar 

  • Mujica MI, Burin G, Pérez MFQ, Quental T (2020) Seed plant families with diverse mycorrhizal states have higher diversification rates. The Preprint Server for Biology, BioRxiv. https://doi.org/10.1101/824441

  • Munoz-Ucros J, Zwetsloot MJ, Cuellar-Gempeler C, Bauerle TL (2021) Spatiotemporal patterns of rhizosphere microbiome assembly: from ecological theory to agricultural application. J Aplied Ecol 58:894–904. https://doi.org/10.1111/1365-2664.13850

    Article  Google Scholar 

  • Nguyen SV, Nguyen PTK, Araki M, Perry RN, Tran LB, Chau KM, Min YY, Toyota K (2020) Effects of crop** systems and soil amendments on nematode community and its relationship with soil physicochemical properties in a paddy rice field in the Vietnamese Mekong Delta. Appl Soil Ecol 156. https://doi.org/10.1016/j.apsoil.2020.103683

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199. https://doi.org/10.5598/imafungus.2011.02.02.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Okalebo JR, Gathua KW, Woomer PL (1993) Laboratory methods of plant and soil analysis: a working manual. Technical bulletin n. 1. Nairobi: tropical soil biology and fertility Programme/soil science society East Africa/UNESCO/ROSTA.https://www.worldcat.org/title/laboratory-methods-of-soil-and-plant-analysis-a-working-manual/oclc/51374874

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular Nr 939, US Gov. print. Office, Washington.

  • Osborne BB, Nasto MK, Soper FM, Asner GP, Balzotti CS, Cleveland CC, Taylor PG, Townsend AR, Porder S (2020) Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest. Biogeochemistry 147:293–306. https://doi.org/10.1007/s10533-020-00643-0

    Article  CAS  Google Scholar 

  • Parihar M, Meena VS, Mishra PK, Rakshit A, Choudhary M, Yadav RP, Rana K, Bisht JK (2019) Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Arch Microbiol 201:723–735. https://doi.org/10.1007/s00203-019-01653-9

    Article  CAS  PubMed  Google Scholar 

  • Pauwels R, Jansa J, Puschel D, Muller A, Graefe J, Kolb S, Bitterlich M (2020) Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula. Plant Soil. https://doi.org/10.1007/s11104-020-04723-w

  • Peña-Venegas CP, Sterling A, Andrade-Ramírez TK (2021) Arbuscular Mycorrhization in Colombian and introduced rubber (Hevea brasiliensis) genotypes cultivated on degraded soils of the Amazon region. Agriculture 11(4):361. https://doi.org/10.3390/agriculture11040361

    Article  CAS  Google Scholar 

  • Pereira S, Leal IR, Tabarelli M, Santos MG (2020) Intense mycorrhizal root colonization in a human-modified landscape of the Caatinga dry forest. For Ecol Manag 462:117970. https://doi.org/10.1016/j.foreco.2020.117970

    Article  Google Scholar 

  • Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, Gai J (2020) Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biol Biochem 144:107790. https://doi.org/10.1016/j.soilbio.2020.107790

    Article  CAS  Google Scholar 

  • Quist CW, Gort G, Mooijman P, Brus DJ, Elsen SVD, Kostenko O, Vervoort M, Bakker J, Putten WHVD, Helder J (2019) Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol Biochem 136. https://doi.org/10.1016/j.soilbio.2019.107542

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Jul 2022

  • Sá CSB, Shiosaki RK, Santos AM, Campos MAS (2021) Salinization causes abrupt reduction in soil nematode abundance in the Caatinga area of the Submedio San Francisco Valley. Brazilian Semiarid Region Pedobiologia 85-86. https://doi.org/10.1016/j.pedobi.2021.150729

  • Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, Silva GA, Seitz B, Sieverding E, van der Heijden MGA, Oehj F (2021) Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza. https://doi.org/10.1007/s00572-021-01042-5

  • Sandoval-Pineda JF, Pérez-Moneada UA, Rodriguez A, Torres-Rojas E (2020) High cadmium concentration resulted in low arbuscular mycorrhizal fungi community diversity associated to cocoa (Theobroma cacao L.). Acta Biológica Colombiana 25(3):333–344. https://doi.org/10.15446/abc.v25n3.78746

    Article  Google Scholar 

  • Sátiro JNO, Motta AC, Demetrio WS, Segella RF, Cresmonesi MV, Araújo EM, Falcão PS, Martins GC, Muniz AW, Taube PS, Rebellato LR, de Oliveira Júnior RC, Teixeira WG, Neves EG, Lima HP, Shock MP, Kille P, Cunha L, Network TPI, Brown GG (2021) Micronutrient availability in Amazonian dark earths and adjacent soils. Georderma 395:115072. https://doi.org/10.1016/j.geoderma.2021.115072

    Article  CAS  Google Scholar 

  • Schmitz D, Schaefer CERG, Putzke J, Francelino MR, Ferrari FR, Corrêa GR, Villa PM (2020a) How does the pedoenvironmental gradient shape non-vascular species assemblages and community structures in maritime Antarctica? Ecol Indic 108:105726. https://doi.org/10.1016/j.ecolind.2019.105726

    Article  Google Scholar 

  • Schmitz D, Villa PM, Schaefer CEGR, Francelino MR (2020b) Avaliação de gradiante pedoambiental usando análise de componentes principais (PCA) na Antártica Marítima. In: Diniz ES, Villa PM (org) Aplicações da linguagem R em análises de vegetação. Atena, Ponta Grossa, Brazil. https://doi.org/10.22533/at.Ed.3552009035

  • Sieverding E, da Silva GA, Berndt R, Oehl F (2011) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129(2):373–386. https://doi.org/10.5248/129.373

    Article  Google Scholar 

  • Silva JVCL, Ferris H, Cares JE, Esteves AM (2021a) Effect of land use and seasonality on nematode faunal structure and ecosystem functions in the Caatinga dry forest. Eur J Soil Biol 103. https://doi.org/10.1016/j.ejsobi.2021.103296

  • Silva MTR, Calandrelli A, Rinaldi LK, Miamoto A, Moreno BP, Costa WF, Silva C, Alberton O, Dias-Arieira CR (2021b) Arbuscular mycorrhizae maintain lemongrass citral levels and mitigate resistance despite root lesion nematode infection. Rhizosphere 19. https://doi.org/10.1016/j.rhisph.2021.100359

  • Silva-Olaya AM, Mora-Motta DA, Cherubin MR, Grados D, Somenahally A, Ortiz-Morea FA (2021) Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS One 16(8):e0255669. https://doi.org/10.1371/journal.pone.0255669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza T (2015) Handbook of arbuscular mycorrhizal fungi. Springer, Cham

    Book  Google Scholar 

  • Souza TAF, Andrade LA, Freitas H, Sandim AS (2017) Biological invasion influences the outcome of plant-soil feedback in the invasive plant species from the Brazilian semi-arid. Microb Ecol. https://doi.org/10.1007/s00248-017-0999-6

  • Souza TAF, Rodriguez-Echeverría S, Andrade LA, Freitas H (2016) Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Braz J Microbiol 47:359–366. https://doi.org/10.1016/j.bjm.2016.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanowicz AM, Rozek K, Stanek M, Rola K, Zubek S (2021) Moderate effects of tree species identity on soil microbial communities and soil chemical properties in a common garden experiment. For Ecol Manag 482:118799. https://doi.org/10.1016/j.foreco.2020.118799

    Article  Google Scholar 

  • Su L, Bai T, Qin X, Yu H, Wu G, Zhao Q, Tan L (2021) Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Appl Soil Ecol 166. https://doi.org/10.1016/j.apsoil.2021.103994

  • Thirkell TJ, Pastok D, Field KJ (2020) Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob Chang Biol 26(3):1725–1738. https://doi.org/10.1111/gcb.14851

    Article  PubMed  Google Scholar 

  • Thoker SA (2021) Influence of arbuscular mycorrhizal fungus on growth and nutrient status in chickpea (Cicer Arietinum L.) plant. Research Square 10.21203/rs.3.rs-204426/v1

  • Thompson JP, Clewett T (2021) Impacts of root-lesion nematode (Pratylenchus thornei) on plant nutrition, biomass, grain yield and yield components of susceptible/intolerant wheat cultivars determined by nematicide applications. Agronomy 11:296. https://doi.org/10.3390/agronomy11020296

    Article  CAS  Google Scholar 

  • Trindade R, Almeida L, Xavier L, Lins AL, Andrade EH, Maia JG, Mello A, Stezer W, Ramos A, Silva JK (2019) Arbuscular mycorrhizal fungi colonization promotes changes in the volatile and compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L. ‘Bragantina’ Plants 8(442). https://doi.org/10.3390/plants8110442

  • Ulloa-Munõz R, Olivera-Gonzales P, Castañeda-Barreto A, Villena GK, Tamariz-Angele CT (2020) Diversity of endophytic plant-growth microorganisms from Gentianella weberbaueri and Valeriana pycnantha, highland Peruvian medicinal plants. Microbiol Res 233:126413. https://doi.org/10.1016/j.micres.2020.126413

    Article  CAS  PubMed  Google Scholar 

  • Vallejos-Torres G, Espinoza E, Marín-Díaz J, Solis R, Arévalo LA (2021) The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. J Soil Sci Plant Nutr 21:364–373. https://doi.org/10.1007/s42729-020-00366-z

    Article  CAS  Google Scholar 

  • van Langenhove L, Depaepe T, Verryckt LT, Vallicrosa H, Fuchlueger L, Lugli LF, Bréchet L, Ogaya R, Lluisia J, Urbina I, Gargallo-Garriga A, Grua O, Richter A, Penuelas J, Van Der Straeten D, Janssens IA (2021) Impact of nutrient additions on free-living nitrogen fixation in litter and soil of two French-Guianese lowland tropical forests. JGR Biogeosci 126. https://doi.org/10.1029/2020JG006023

  • Vance FD, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Vasco-Palacios AM, Bahram M, Boekhout T, Tederso L (2021) Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant Soil 450:111–131. https://doi.org/10.1007/s11104-019-04218-3

    Article  CAS  Google Scholar 

  • Vieira Junior WG, Moura JB, Souza RF, Braga APM, Matos DJC, Brito GHM, Santos JM, Moreira RM, Silva SD (2020) Seasonal variation in mycorrhizal community of different Cerrado phytophysiomies. Front Microbiol. https://doi.org/10.3389/fmicb.2020.576764

  • Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, Scheel D, Friedrich MW, Overmann J (2020) Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J 14:463–475. https://doi.org/10.1038/s41396-019-0543-4

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Mei X, Hu Z, Guo H, Chen X, Griffiths BS, Liu M (2021) Moderate grazing increases the structural complexity of soil micro-food webs by promoting root quantity and quality in a Tibetan alpine meadow. Appl Soil Ecol 168. https://doi.org/10.1016/j.apsoil.2021.104161

  • Westphalen DJ, Angelo AC, Rossa ÜB, Bognola IA, Martins CEN (2019) Impact of different silvicultural techniques on the productive efficiency of Ilex paraguariensis a.St. Hill Agroforestry Systems 94:791–798. https://doi.org/10.1007/s10457-019-00451-y

    Article  Google Scholar 

  • WRB - IUSS Working Group (2006) World Reference Base for soil. World Soil Resources Reports, Rome, FAO

  • Yang B, Banerjee S, Herzog C, Ramírez AC, Dahlin P, Heijden MGAVD (2021) Impact of land use type and organic farming on the abundance, diversity, community composition and functional properties of soil nematode communities in vegetable farming. Agric Ecosyst Environ 318. https://doi.org/10.1016/j.agee.2021.107488

  • Yeates GW, Wardle DA, Watson RN (1993) Relationships between nematodes, soil microbial biomass and weed-management strategies in maize and asparagus crop** systems. Soil Biol Biochem 25(7). https://doi.org/10.1016/0038-0717(93)90089-T

  • Yin L, **ao W, Dijkstra FA, Zhu B, Wang P, Cheng W (2020) Linking absorptive roots and their functional traits with rhizosphere priming of tree species. Soil Biol Biochem 150:107997. https://doi.org/10.1016/j.soilbio.2020.107997

    Article  CAS  Google Scholar 

  • Yinga OE, Kumar KS, Chowlani M, Tripathi SK, Khanduri VP, Singh SK (2020) Influence of land-use pattern on soil quality in a steeply sloped tropical mountainous region. Archives of Agronomy, and Soil Science, India. https://doi.org/10.1080/03650340.2020.1858478

  • Zhang C, Wang J, Ren Z, Hu Z, Tian S, Fan W, Chen X, Griffiths BS, Hu F, Liu M (2020a) Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biol Biochem 151. https://doi.org/10.1016/j.soilbio.2020.108038

  • Zhang P, Bonte D, Dey GBD, Vandegehuchte ML (2020b) Belowground plant-plant signaling of root infection by nematodes. Pedobiologia 83. https://doi.org/10.1016/j.pedobi.2020.150688

  • Zhang Q, Bol R, Amelung W, Missong A, Siemens J, Mulder I, Willbold S, Müller C, Muniz AW, Klumpp E (2021a) Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils. Geoderma 397:115103. https://doi.org/10.1016/j.geoderma.2021.115103

    Article  CAS  Google Scholar 

  • Zhang Y, Ji L, Yang L (2021b) Abundance and diversity of soil nematode community at different altitudes in cold-temperate montane forests in Northeast China. Global Ecol Conserv 29. https://doi.org/10.1016/j.gecco.2021.e01717

  • Zhao C, Guo E, Shao Y, Zhang W, Zhang C, Liu Y, Li Y, Zou X, Fu S (2021) Impacts of litter addition and root presence on soil nematode community structure in a young eucalyptus plantation in southern China. For Ecol Manag 479. https://doi.org/10.1016/j.foreco.2020.118633

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tancredo Souza.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, T., Barros, I.C., da Silva, L.J.R. et al. Soil microbiota community assembling in native plant species from Brazil’s legal Amazon. Symbiosis 86, 93–109 (2022). https://doi.org/10.1007/s13199-021-00828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00828-7

Keywords

Navigation