Log in

Electrocatalytic Oxidation of Glycerol using Electrolessly Deposited CuNiSnP Electrocatalysts Supported on Carbon in Alkaline Media

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electro-oxidation of glycerol (EOG) has gained wide attention as an alternative to producing value-added chemicals for glycerol valorization. In this study, a multimetallic electrocatalyst containing copper (Cu), nickel (Ni), tin (Sn), and phosphorus (P) was supported on a carbon catalyzed substrate (CCS) using an electroless deposition technique and evaluated for EOG. The effect of the electroless deposition time (15, 30, and 45 min) was also studied. Characterization of the CuNiSnP/CCS electrocatalyst via X-ray diffraction, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy revealed the formation of a thin-film morphology containing Cu as the main species on the surface and covering the carbon substrate. The electrochemical performance evaluation showed that the electrocatalyst obtained after 30 min of electroless deposition produced the maximum current density (6.5 mA/cm2). The multimetallic composition of CuNiSnP/CCS provided better reaction performance than related tri- (CuNiP/CCS and NiSnP/CCS), bi- (NiP/CCS), and monometallic (Cu/CCS) composites according to the peak current densities for the forward (if) and backward (ib) oxidation, the if/ib ratio, and the onset potential. Furthermore, CuNiSnP/CCS exhibited more stable and stronger resistance to poisoning. Overall, this study demonstrates the potential of the new electrode material CuNiSnP/CCS as an effective electrocatalyst for EOG.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. C.A.G. Quispe, C.J.R. Coronado, J.A.C. Jr, Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sust. Energ. Rev. 27, 475–493 (2013). https://doi.org/10.1016/j.rser.2013.06.017

  2. R.G.D. Silva, S.A. Neto, K.B. Kokoh, A.R.D. Andrade, Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products. J Power Sources 351, 174–182 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.101

    Article  CAS  Google Scholar 

  3. B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 13(8), 1960–1979 (2011). https://doi.org/10.1039/C1GC15320J

    Article  CAS  Google Scholar 

  4. D. Liu, J.-C. Liu, W. Cai, J. Ma, H.B. Yang, H. **ao, J. Li, Y. **ong, Y. Huang, B. Liu, Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat Commun 10, 1–8 (2019). https://doi.org/10.1038/s41467-019-09788-5

    Article  CAS  Google Scholar 

  5. R. Ciriminna, M. Pagliaro, Oxidation of tartronic acid and dihydroxyacetone to sodium mesoxalate mediated by TEMPO. Tetrahedron Lett, 45(34), 6381–6383 (2004). https://doi.org/10.1016/j.tetlet.2004.07.021

  6. A.A.A. Raman, H.W. Tan, and A. Buthiyappan, Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Front. Chem. 774–783 (2019). https://doi.org/10.3389/fchem.2019.00774

  7. T. Valliyappan, N. Bakhshi, A.K. Dalai, Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour. Technol. 99(10), 4476–4483 (2008). https://doi.org/10.1016/j.biortech.2007.08.069

    Article  CAS  PubMed  Google Scholar 

  8. H. Sulistyo, I. Hapsari, Budhijanto, W.B. Sediawan, S.S. Rahayu, M.M. Azis. Heterogeneous catalytic reaction of glycerol with acetone for solketal production. in MATEC Web of Conferences. (2019)

  9. G. Bagnato, A. Iulianelli, A. Sanna, A. Basile, Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 7, 1–31 (2017). https://doi.org/10.3390/membranes7020017

    Article  CAS  Google Scholar 

  10. S.K. Green, J. Lee, H.J. Kim, G.A. Tompsett, W.B. Kim, G.W. Huber, The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor Green Chem. 15(7), 1869–1879 (2013). https://doi.org/10.1039/C3GC00090G

  11. J.J. Roylance, T.W. Kim, K.-S. Chon, Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source. ACS Catal. 6(3), 1840–1847 (2016). https://doi.org/10.1021/acscatal.5b02586

    Article  CAS  Google Scholar 

  12. A.E. Roz, P. Fongarland, F. Dumeignil, M. Capron, Glycerol to Glyceraldehyde Oxidation Reaction Over Pt-Based Catalysts Under Base-Free Conditions. Front. Chem. 7, 1–9 (2019). https://doi.org/10.3389/fchem.2019.00156

    Article  CAS  Google Scholar 

  13. R.M. Castagna, J.M. Sieben, A.E. Alvarez, M.M.E. Duarte, Electrooxidation of ethanol and glycerol on carbon supported PtCu nanoparticles. Int J Hydrogen Energy 44, 5970–5972 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.090

    Article  CAS  Google Scholar 

  14. Y. Liu, W. Yu, D. Raciti, D.H. Gracias, C. Wang*, Electrocatalytic Oxidation of Glycerol on Platinum. J. Phys. Chem. C 123, 426–432 (2019). https://doi.org/10.1002/celc.201900311

  15. B. Habibi, N. Delnavaz, Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media. RSC Adv. 6, 31797–31806 (2016). https://doi.org/10.1039/c5ra26006j

  16. Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat Commun 10, 5335–5347 (2019). https://doi.org/10.1038/s41467-019-13375-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. C.L. Bracey, P.R. Ellis, and G.J. Hutchings, Application of copper-gold alloys in catalysis: Current status and future perspectives. Chem. Soc. Rev. 38 (2009). https://doi.org/10.1039/B817729P

  18. T. Eisaa, H.O. Mohameda, Y.-J. Choi, S.-G. Park, R. Ali, M. Ali, Abdelkareem, Sang-EunOh, and Kyu-JungCha, Nickel nanorods over nickel foam as standalone anode for direct alkaline methanol and ethanol fuel cell. Int J Hydrogen Energy 45(10), 5948–5959 (2020). https://doi.org/10.1016/j.ijhydene.2019.08.071

    Article  CAS  Google Scholar 

  19. M.E. Ghaith, G.A. El-Nagar, M.G.A. El-Moghny, H.H. Alalawy, M.E. El-Shakre, M.S. El-Deab, Electrocatalysis by design: Enhanced electro-oxidation of glycerol at NiOx nanoparticle modified 3D porous carbon felts. Int J Hydrogen Energy 45(16), 9658–9668 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.213

    Article  CAS  Google Scholar 

  20. N. Hidayati, K. Scott, Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bull. Chem. React. Eng. 11(1), 10–20 (2016). https://doi.org/10.9767/bcrec.11.1.399.10-20

    Article  CAS  Google Scholar 

  21. R.O. Apaydin, B. Ebin, S. Gurmen. Direct production of nanostructured copper-nickel (Cu-Ni) alloy particles. In 3RD International advances in applied physics and materials science congress. Antalya, Turkey: AIP Publishing. (2013)

  22. X. An, K. Li, and J. Tang, Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem. 7, 1086–1093 1 (2014). https://doi.org/10.1002/cssc.201301194

  23. J.Y. Zheng, T.-K. Van, A.U. Pawar, C.W. Kim, Y.S. Kang, One-step transformation of Cu to Cu2O in alkaline solution. RSC Adv. 4, 18616–18620 (2014). https://doi.org/10.1039/C4RA01174K

    Article  CAS  Google Scholar 

  24. I. Ohno, O. Wakabayashi, S. Haruyama, Anodic Oxidation of Reductants in Electroless Plating. J. Electrochem. Soc. 132, 2323 (1985). https://doi.org/10.1149/1.2113572

    Article  CAS  Google Scholar 

  25. J. Zhao, N. Li, G. Cui, J. Zhao, Study on Immersion Tin Process by Electrochemical Methods and Molecular Orbital Theory. J. Electrochem. Soc. 153, 848–853 (2006). https://doi.org/10.1149/1.2358119

    Article  CAS  Google Scholar 

  26. M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto, I. Nakata, T. Sakakura, T. Haruyama, Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO. Electrocatalysis 9, 323–332 (2018). https://doi.org/10.1007/s12678-017-0434-2

    Article  CAS  Google Scholar 

  27. H.W. Lee, N.M. Shinde, P.V. Shinde, J.M. Yun, P.K. Song, K.H. Kim, High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode. J Solid State Electrochem. 23, 2609–2617 (2019). https://doi.org/10.1007/s10008-019-04351-0

    Article  CAS  Google Scholar 

  28. Y. Zhu, T. Liu, L. Li, S. Song, R. Ding1, Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media. Ionics 24, 1121–1127 (2018). https://doi.org/10.1007/s11581-017-2270-z

  29. X. Hao, J. Dong, X. Mu, J. Wei, C. Wang, W. Ke, Influence of Sn and Mo on Corrosion Behavior of Ferrite-pearlite Steel in the Simulated Bottom Plate Environment of Cargo Oil Tank. J Mater Sci Technol. 35, 799–811 (2019). https://doi.org/10.1016/j.jmst.2018.11.012

    Article  CAS  Google Scholar 

  30. A.M.B. Honorato, M. Khalid, A.A.d.S. Curvelo, H. Varela, A.S. Shahgaldi, Trimetallic Nanoalloy of NiFeCo Embedded in Phosphidated Nitrogen Doped Carbon Catalyst for Efficient Electro-Oxidation of Kraft Lignin. Polymers 14 (2022). https://doi.org/10.3390/polym14183781

  31. T. Susi, T. Pichler, P. Ayala, X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J Nanotechnol. 6, 177–192 (2015). https://doi.org/10.3762/bjnano.6.17

  32. D.Z. Jeffery, G.A. Camara, The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences. Electrochem Commun 12, 1129–1132 (2010). https://doi.org/10.1016/j.elecom.2010.06.001

    Article  CAS  Google Scholar 

  33. A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P.B. Atanassov, Self-Supported PdxBi Catalysts for the Electrooxidation of Glycerol in Alkaline Media. J. Am. Chem. Soc. 136, 3937–3945 (2014). https://doi.org/10.1021/ja412429f

    Article  CAS  PubMed  Google Scholar 

  34. H. Gao, S. Liao, Z. Liang, H. Liang, F. Luo, Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media. J Power Sources 196(15), 6138–6143 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.031

    Article  CAS  Google Scholar 

  35. Y.H. Ahmad, A.T. Mohamed, K.M. Youssef, S. Kundu, K.A. Mkhoyan, S.Y. Al-Qaradawi, Rational synthesis of ternary PtIrNi nanocrystals with enhanced poisoning tolerance for electrochemical ethanol oxidation. Electrochem. commun. 101, 61–67 (2019). https://doi.org/10.1016/j.elecom.2019.03.001

    Article  CAS  Google Scholar 

  36. H. Wang, X. Kou, J. Zhang, J. Li, Large scale synthesis and characterization of Ni nanoparticles by solution reaction method. Bull. Mater. Sci. 31, 97–100 (2008). https://doi.org/10.1007/S12034-008-0017-1

    Article  Google Scholar 

  37. J. Sun, J. Yu, Q. Ma, F. Meng, X. Wei, Y. Sun, N. Tsubaki, Freezing copper as a noble metal–like catalyst for preliminary hydrogenation. Sci. Adv. 4, 1–10 (2018). https://doi.org/10.1126/sciadv.aau3275

  38. A.R. Naghash, T.H. Etsell, S. Xu, XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chem. Mater. 18, 2480–2488 (2006). https://doi.org/10.1021/cm051910o

    Article  CAS  Google Scholar 

  39. J. Zhou, L. Yuan, J. Wang, L. Song, Y. You, R. Zhou, J. Zhang, and J. Xu, Combinational modulations of NiSe2 nanodendrites by phase engineering and iron-do** towards efficient oxygen evolution reaction. J. Mater. Chem. A 8, 8113–8120 (2020). https://doi.org/10.1039/D0TA00860E

  40. O. Fayyaz, A.B. Radwan, M.H. Sliem, A.M. Abdullah, A. Hasan, R.A. Shakoor*, Investigating the Properties of Electrodeposited of Ni-P-ZrC Nanocomposite Coatings. ACS Omega, 6, 33310–33324 (2021). https://doi.org/10.1021/acsomega.1c03117

  41. M. Alsabet, M. Grden, G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of β-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature. Electrocatalysis 6, 60–71 (2015). https://doi.org/10.1007/s12678-011-0067-9

  42. F. Caballero-Briones, J.M. Artes, I. Dı´ez-Pe´rez, P. Gorostiza, and F. Sanz, Direct Observation of the Valence Band Edge by in Situ ECSTM-ECTS in p-Type Cu2O Layers Prepared by Copper Anodization. J.Phys.Chem 113, 1028–1036 (2009). https://doi.org/10.1021/jp805915a

  43. R. Ortiz, O.P. Márquez, J. Márquez, C. Gutiérrez, Necessity of Oxygenated Surface Species for the Electrooxidation of Methanol on Iridium. J. Phys. Chem. B. 100(20), 8389–8396 (1996). https://doi.org/10.1021/jp953185i

    Article  CAS  Google Scholar 

  44. M.A.A. Rahim, H.B. Hassan, R.M.A. Hamid, A systematic study on the effect of OH− and Ni2+ ions on the electro-catalytic oxidation of methanol at Ni-S-1 electrode. J Power Sources 154(1), 59–65 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.198

    Article  CAS  Google Scholar 

  45. H.B. Hassan, Z. Abdel Hamid, H. Mona, Synthesis and performance of electroless Ni-P-TiCN composite coatings on Al substrate. Surf. Interface Anal. 46, 512–520 (2014). https://doi.org/10.1002/sia.5530

  46. W. Chaitree, E.E. Kalu, Z. Liang, Y.D. Yeboaha, Effects of bath composition and thermal treatment on the performance of Co-Ni-Mo-P electrocatalyst supported on carbon for the electro- oxidation of ethanol. J. Alloys Compd. 860, 158404 (2021). https://doi.org/10.1016/j.jallcom.2020.158404

  47. L.-S. Yuan, Y.-X. Zheng, M.-L. Jia, S.-J. Zhan, Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim. Acta 154, 54–62 (2015). https://doi.org/10.1016/j.electacta.2014.12.055

    Article  CAS  Google Scholar 

  48. A. Bard, L. Faulkner, Electrochemical methods Fundamentals and Applications. JOHN WILEY & SONS, INC. (2001)

  49. V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, G. Tremiliosi-Filho, K.B. Kokoh, Glycerol oxidation on nickel based nanocatalysts in alkaline medium –Identification of the reaction products. J. Electroanal. Chem. 703, 56–62 (2013). https://doi.org/10.1016/j.jelechem.2013.05.021

    Article  CAS  Google Scholar 

  50. V. Oliveira, C. Morais, K. Servat, T. Napporn, G. Tremiliosi-Filho, K. Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochim Acta 117, 255–262 (2014). https://doi.org/10.1016/j.electacta.2013.11.127

    Article  CAS  Google Scholar 

  51. M. S.E., Houache, E. Cossar, S. Ntais, E.A. Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation. J. Power Sources 375, 310–319 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.089

  52. V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, P. Olivi, K.B. Kokoh, G. Tremiliosi-Filho, Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C. Electrocatalysis 6, 447–454 (2015). https://doi.org/10.1007/s12678-015-0261-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Office of the Permanent Secretary Ministry of Higher Education, Science Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) (Grant No. RGNS64-216).

Funding

Office of the Permanent Secretary Ministry of Higher Education, Science Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) (Grant No. RGNS64-216).

Author information

Authors and Affiliations

Authors

Contributions

Wasu Chaitree: Conceptualization, Validation, Investigation, Writing - original draft. Joongjai Panpranot: Resources, Supervision, Writing - review & editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wasu Chaitree.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.91 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaitree, W., Panpranot, J. Electrocatalytic Oxidation of Glycerol using Electrolessly Deposited CuNiSnP Electrocatalysts Supported on Carbon in Alkaline Media. Electrocatalysis 14, 840–856 (2023). https://doi.org/10.1007/s12678-023-00840-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00840-z

Keywords

Navigation