Log in

Electrocatalysis of methanol at the surface of carbon paste electrode modified with composite of Cu-Al-layered double hydroxide and graphene oxide

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, graphene oxide (GO) was prepared by Hummers' method. Then a composite of Cu-Al-layered double hydroxide (Cu-Al-LDH) and GO was prepared by placing and combining Cu-Al-LDH by co-precipitation method. This composite was used as a modifier of carbon paste electrode (CPE), and their structural characteristics were studied by using X-ray diffraction, Fourier transform infrared, field emission scanning microscopy, energy-dispersive X-ray and Brunauer–Emmett–Teller techniques. The catalytic performance of this modified CPE for methanol oxidation reaction (MOR) in alkaline media was also evaluated by using various electrochemical methods such as cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Comparing the activity of Cu-Al-LDH/GO, Cu-Al-LDH and GO catalysts in CPE for electrocatalysis of MOR in 0.5 M methanol with a scan rate of 50 mV s−1 showed the current densities 2.1 mA/cm2, 0.6 mA/cm2 and 0.33 mA/cm2, respectively. This result indicates that GO provides many active sites and transmission ways to catalyze MOR by creating a high surface area and preventing Cu-Al-LDH accumulation. Also, some effective parameters, such as the percentage of Cu-Al-LDH/GO in the preparation of Cu-Al-LDH/GO/CPE electrode, methanol concentration, the scan rate of potential and switching potential, were investigated in the electrocatalysis of MOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Koohestanian, F. Shahraki, J. Environ. Chem. Eng. 9, 105777 (2021). https://doi.org/10.1016/j.jece.2021.105777

    Article  CAS  Google Scholar 

  2. M.S. Alias, S.K. Kamarudin, A.M. Zainoodin, M.S. Masdar, Int. J. Hydrogen Energy 45, 19620 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.202

    Article  CAS  Google Scholar 

  3. H. Su, Y.H. Hu, Energy Sci. Eng. 9, 958 (2021). https://doi.org/10.1002/ese3.833

    Article  CAS  Google Scholar 

  4. S. Wasmus, A. Küver, J. Electroanal. Chem. 461, 14 (1999). https://doi.org/10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  5. L. Huang, X. Luo, Y. Jiang, X. Mao, M. Shi, Ceram. Int. 45, 16976 (2019). https://doi.org/10.1016/j.ceramint.2019.05.246

    Article  CAS  Google Scholar 

  6. F. Ye, Z. Wang, C. Xu, M. Yuan, P. Liu, W. Yang, G. Liu, Renew. Energy 145, 514 (2020). https://doi.org/10.1016/j.renene.2019.06.034

    Article  CAS  Google Scholar 

  7. A. Yuda, A. Ashok, A. Kumar, Catal. Rev. 64, 126 (2022). https://doi.org/10.1080/01614940.2020.1802811

    Article  CAS  Google Scholar 

  8. N.A. Hampson, M.J. Willars, B.D. McNicol, J. Power Sources 4, 191 (1979). https://doi.org/10.1016/0378-7753(79)85010-7

    Article  CAS  Google Scholar 

  9. D. ul Imaan, F.Q. Mir, B. Ahmad, J. Environ. Chem. Eng. 9, 106119 (2021). https://doi.org/10.1016/j.jece.2021.106119

    Article  CAS  Google Scholar 

  10. L. Jörissen, V. Gogel, J. Kerres, J. Garche, J. Power Sources 105, 267 (2002). https://doi.org/10.1016/S0378-7753(01)00952-1

    Article  Google Scholar 

  11. A. Muthumeenal, M.S.A. Saraswathi, D. Rana, A. Nagendran, J. Environ. Chem. Eng. 5, 3828 (2017). https://doi.org/10.1016/j.jece.2017.07.036

    Article  CAS  Google Scholar 

  12. Y. Yang, L.-M. Luo, D. Chen, H.-M. Liu, R.-H. Zhang, Z.-X. Dai, X.-W. Zhou, Acta Physico-Chimica Sin. 33, 1628 (2017). https://doi.org/10.3866/PKU.WHXB201704242

    Article  CAS  Google Scholar 

  13. Z. Li, X. Jiang, X. Wang, J. Hu, Y. Liu, G. Fu, Y. Tang, Appl. Catal. B Environ. 277, 119135 (2020). https://doi.org/10.1016/j.apcatb.2020.119135

    Article  CAS  Google Scholar 

  14. Y.-N. Zhai, Y. Li, J.-Y. Zhu, Y.-C. Jiang, S.-N. Li, Y. Chen, J. Power Sources 371, 129 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.051

    Article  CAS  Google Scholar 

  15. L. Li, X.-L. He, T. Qin, F.-T. Dai, X.-H. Zhang, J.-H. Chen, Acta Physico-Chimica Sin. 31, 927 (2015). https://doi.org/10.3866/PKU.WHXB201503241

    Article  CAS  Google Scholar 

  16. J. Cheng, X. Liu, J. Yang, J. Liu, L. Zhang, L. Zhang, J. Electroanal. Chem. (2022). https://doi.org/10.1016/j.jelechem.2021.116001

    Article  Google Scholar 

  17. A.A. Ciucu, J. Biosens. Bioelectron. 5, 1 (2014)

    Google Scholar 

  18. J.-B. Raoof, S.R. Hosseini, R. Ojani, S. Mandegarzad, Energy 90, 1075 (2015). https://doi.org/10.1016/j.ceramint.2019.05.246

    Article  CAS  Google Scholar 

  19. M. Fu, W. Chen, X. Zhu, B. Yang, Q. Liu, Carbon N. Y. 141, 748 (2019). https://doi.org/10.1016/j.carbon.2018.10.034

    Article  CAS  Google Scholar 

  20. H. Yang, D. Yin, L. Gao, X. Zhang, X. Zhang, Q. Liu, J. Colloid Interface Sci. 561, 881 (2020). https://doi.org/10.3390/nano11102644

    Article  CAS  PubMed  Google Scholar 

  21. S. Tang, Y. Yao, T. Chen, D. Kong, W. Shen, H.K. Lee, Anal. Chim. Acta 1103, 32 (2020). https://doi.org/10.1016/j.aca.2019.12.065

    Article  CAS  PubMed  Google Scholar 

  22. H.A. Tabti, M. Adjdir, A. Ammam, B. Mdjahed, B. Guezzen, A. Ramdani, C.K. Benddedouche, N. Bouchikhi, N. Chami, Res. Chem. Intermed. 46, 5377 (2020). https://doi.org/10.1007/s11164-020-04268-8

    Article  CAS  Google Scholar 

  23. M. Sajid, C. Basheer, TrAC Trends Anal. Chem. 75, 174 (2016). https://doi.org/10.1016/j.trac.2015.06.010

    Article  CAS  Google Scholar 

  24. M. Asif, H. Liu, A. Aziz, H. Wang, Z. Wang, M. Ajmal, F. **ao, H. Liu, Biosens. Bioelectron. 97, 352 (2017). https://doi.org/10.1016/j.bios.2017.05.057

    Article  CAS  PubMed  Google Scholar 

  25. W. Shen, J. Sun, J.Y.H. Seah, L. Shi, S. Tang, H.K. Lee, Anal. Chim. Acta 1001, 32 (2018). https://doi.org/10.1016/j.aca.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  26. H. Yang, T. Guo, D. Yin, Q. Liu, X. Zhang et al., J. Taiwan Inst. Chem. Eng. 112, 212 (2020). https://doi.org/10.1016/j.jtice.2020.06.012

    Article  CAS  Google Scholar 

  27. F. Zhang, Z. Wang, K.Q. Xu, J. **a, Q. Liu, Z. Wang, Int. J. Hydrogen Energy 43, 16302 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.059

    Article  CAS  Google Scholar 

  28. N.S. Ahmed, R. Menzel, Y. Wang, A. Garcia-Gallastegui, S.M. Bawaked, A.Y. Obaid, S.N. Basahel, M. Mokhtar, J. Solid State Chem. 246, 130 (2017). https://doi.org/10.1016/j.jssc.2016.11.024

    Article  CAS  Google Scholar 

  29. F. Winter, V. Koot, A.J. Van Dillen, J.W. Geus, K.P. de Jong, J. Catal. 236, 91 (2005). https://doi.org/10.1016/j.jcat.2005.09.020

    Article  CAS  Google Scholar 

  30. M.-Q. Zhao, Q. Zhang, J.-Q. Huang, F. Wei, Adv. Funct. Mater. 22, 675 (2012). https://doi.org/10.1002/adfm.201102222

    Article  CAS  Google Scholar 

  31. L. Wu, G. Wan, S. Shi, Z. He, X. Xu, Y. Tang, C. Hao, G. Wang, New J. Chem. 43, 5826 (2019). https://doi.org/10.1039/C8NJ06217J

    Article  CAS  Google Scholar 

  32. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science. 306, 666 (2004). https://doi.org/10.1126/science.110289

    Article  CAS  PubMed  Google Scholar 

  33. T. Mahmoudi, S. Seo, H.-Y. Yang, W.-Y. Rho, Y. Wang, Y.-B. Hahn, Nano Energy 28, 179 (2016). https://doi.org/10.1016/j.nanoen.2016.08.018

    Article  CAS  Google Scholar 

  34. P. Zamani, D.C. Higgins, F.M. Hassan, X. Fu, J.-Y. Choi, M.A. Hoque, G. Jiang, Z. Chen, Nano Energy 26, 267 (2016). https://doi.org/10.1016/j.nanoen.2016.05.035

    Article  CAS  Google Scholar 

  35. M. Sevilla, G.A. Ferrero, A.B. Fuertes, Energy Storage Mater. 5, 33 (2016). https://doi.org/10.1016/j.ensm.2016.05.008

    Article  Google Scholar 

  36. S. Novikov, N. Lebedeva, A. Satrapinski, J. Walden, V. Davydov, A. Lebedev, Sensors Actuators B Chem. 236, 1054 (2016). https://doi.org/10.1016/j.snb.2016.05.114

    Article  CAS  Google Scholar 

  37. A.K. Singh, R.K. Gautam, S. Agrahari, I. Tiwari, Mater. Chem. Phys. 294, 127002 (2023). https://doi.org/10.1016/j.matchemphys.2022.127002

    Article  CAS  Google Scholar 

  38. C. Zhang, X. Liang, Y. Lu, H. Li, X. Xu, Sensors 20, 4146 (2020). https://doi.org/10.3390/s20154146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Sanati, Z. Rezvani, R. Abazari, Z. Hou, H. Dai, New J. Chem. 43, 15240 (2019). https://doi.org/10.1039/C9NJ03250A

    Article  CAS  Google Scholar 

  40. Y. Bahadori, H. Razmi, New J. Chem. 45, 14616 (2021). https://doi.org/10.1039/D1NJ02258J

    Article  CAS  Google Scholar 

  41. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  42. R. **ao, X. Zhang, X. Zhang, J. Niu, M. Lu, X. Liu, Z. Cai, Talanta 166, 262 (2017). https://doi.org/10.1016/j.talanta.2017.01.065

    Article  CAS  PubMed  Google Scholar 

  43. S. Gamil, M. Antuch, I.T. Zedan, W.M.A. El Rouby, Colloids Surfaces A Physicochem. Eng. Asp. 602, 125067 (2020). https://doi.org/10.1016/j.colsurfa.2020.125067

    Article  CAS  Google Scholar 

  44. H. Lu, L. Wu, L. **ao, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 190, 402 (2016). https://doi.org/10.1016/j.electacta.2015.12.136

    Article  CAS  Google Scholar 

  45. J. Fang, M. Li, Q. Li, W. Zhang, Q. Shou, F. Liu, X. Zhang, J. Cheng, Electrochim. Acta 85, 248 (2012). https://doi.org/10.1016/j.electacta.2012.08.078

    Article  CAS  Google Scholar 

  46. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, L. Liu, A.C.S. Appl, Mater. Interfaces 5, 5443 (2013). https://doi.org/10.1021/am4003843

    Article  CAS  Google Scholar 

  47. A.A. Ensafi, M. Jafari-Asl, A. Nabiyan, B. Rezaei, M. Dinari, Energy 99, 103 (2016). https://doi.org/10.1016/j.energy.2016.01.042

    Article  CAS  Google Scholar 

  48. Y. Cao, G. Li, X. Li, Chem. Eng. J. 292, 207 (2016). https://doi.org/10.1016/j.cej.2016.01.114

    Article  CAS  Google Scholar 

  49. P. Lu, S. Liang, T. Zhou, X. Mei, Y. Zhang, C. Zhang, A. Umar, Q. Wang, RSC Adv. 6, 56599 (2016). https://doi.org/10.1039/C6RA10080E

    Article  CAS  Google Scholar 

  50. J. Huang, Z. Li, B.Y. Liaw, J. Zhang, J. Power Sources 309, 82 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.073

    Article  CAS  Google Scholar 

  51. J.-B. Raoof, R. Ojani, S.R. Hosseini, Int. J. Hydrogen Energy 36, 52 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.022

    Article  CAS  Google Scholar 

  52. J.-B. Raoof, R. Ojani, S.R. Hosseini, S. Aghajani, Int. J. Hydrogen Energy 38, 16394 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.010

    Article  CAS  Google Scholar 

  53. X. Bai, J. Geng, S. Zhao, H. Li, F. Li, A.C.S. Appl, Mater. Interfaces 12, 23046 (2020). https://doi.org/10.1021/acsami.0c06460

    Article  CAS  Google Scholar 

  54. L. Chen, Z. Hua, J. Shi, M. He, A.C.S. Appl, Mater. Interfaces 10, 39002 (2018). https://doi.org/10.1021/acsami.8b16256

    Article  CAS  Google Scholar 

  55. F. Wang, Y. Zhang, W. Liang, L. Chen, Y. Li, X. He, Sens. Actuators B Chem. 273, 41 (2018). https://doi.org/10.1016/j.snb.2018.06.038

    Article  CAS  Google Scholar 

  56. J. Zeng, F. Su, Y.-F. Han, Z. Tian, C.K. Poh, Z. Liu, J. Lin, J.Y. Lee, X.S. Zhao, J. Phys. Chem. C 112, 15908 (2008). https://doi.org/10.1021/jp8048229

    Article  CAS  Google Scholar 

  57. S. Gamil, W.M.A. El Rouby, M. Antuch, I.T. Zedan, RSC Adv. 9, 13503 (2019). https://doi.org/10.1039/C9RA01270B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. E.H. Yu, U. Krewer, K. Scott, Energies 3, 1499 (2010). https://doi.org/10.3390/en3081499

    Article  CAS  Google Scholar 

  59. A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci. 1, 621 (2008). https://doi.org/10.1039/B811802G

    Article  CAS  Google Scholar 

  60. W. Yuan, J. Deng, Z. Zhang, X. Yang, Y. Tang, Renew. Energy 62, 640 (2014). https://doi.org/10.1016/j.renene.2013.08.032

    Article  CAS  Google Scholar 

  61. R. Ojani, E. Tirgari, J.-B. Raoof, J. Solid State Electrochem. 20, 2305 (2016). https://doi.org/10.1007/s10008-016-3250-3

    Article  CAS  Google Scholar 

  62. G. Behmenyar, A.N. Akin, J. Power Sources 249, 239 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.063

    Article  CAS  Google Scholar 

  63. W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng et al., Nat. Commun. 6, 1 (2015). https://doi.org/10.1038/ncomms10035

    Article  CAS  Google Scholar 

  64. L.A. Fard, R. Ojani, J.B. Raoof, E.N. Zare, M.M. Lakouraj, Energy 127, 419 (2017). https://doi.org/10.1016/j.energy.2017.03.159

    Article  CAS  Google Scholar 

  65. L.A. Fard, R. Ojani, J.B. Raoof, Int. J. Hydrogen Energy 41, 17987 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.010

    Article  CAS  Google Scholar 

  66. S. Sheikhi, F. Jalali, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164510

    Article  Google Scholar 

  67. R. Parsons, T. VanderNoot, J. Electroanal. Chem. Interfacial Electrochem. 257, 9 (1988). https://doi.org/10.1016/0022-0728(88)87028-1

    Article  CAS  Google Scholar 

  68. Z. Wang, H. Zhang, S. Liu, Z. Dai, P. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Chem. Commun. 56, 13595 (2020). https://doi.org/10.1039/D0CC05720G

    Article  CAS  Google Scholar 

  69. X. Wang, M. Sun, Y. Guo, J. Hu, M. Zhu, J. Colloid Interface Sci. 558, 38 (2020). https://doi.org/10.1016/j.jcis.2019.09.085

    Article  CAS  PubMed  Google Scholar 

  70. V.K. Natarajan, S.L. Madaswamy, S.M. Wabaidur, M.A. Islam, R. Dhanusuraman, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09231-4

    Article  Google Scholar 

  71. X. Chen, J. Zhao, J. Lian, X. Wang, Green Chem. (2023). https://doi.org/10.1039/D2GC04490K

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of this work from the University of Mazandaran (UMZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan Bakhsh Raoof.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Raoof, J.B. & Ghani, M. Electrocatalysis of methanol at the surface of carbon paste electrode modified with composite of Cu-Al-layered double hydroxide and graphene oxide. J IRAN CHEM SOC 20, 2285–2295 (2023). https://doi.org/10.1007/s13738-023-02836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02836-4

Keywords

Navigation