Log in

Shunt compensation using Deep Belief Learning Network Based Inductively Coupled DSTATCOM

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The directly coupled distributed static compensator (DC-DSTATCOM) is often utilized to achieve better power quality (PQ) in the power distribution network (PDN). However, this compensator faced challenges like poor adaptability performance and more maintenance costs due to the integration of several types of energy resources. To overcome the above-said limitations, the inductively coupled distributed static compensator (IC-DSTATCOM) using Deep Belief Learning Network (DBLN) technique is proposed. The power transfer capability of the IC-DSTATCOM is examined by considering the impedance matching principle of the distributed static compensator (DSTATCOM), source and load. Besides this, the dependent parameters are combined with the convergence factor and learning rate to achieve the approximate tuned weight by using the suggested learning mechanism. The generalized mathematical equations are illustrated using MATLAB/Simulink to generate the switching pulses. The simulation studies of both DC-DSTATCOM & IC-DSTATCOM are performed to evaluate the transient behaviour and robustness under different states of loading. The proposed system is augmented with a superior performance in terms of harmonics curtailment, improvement in power factor (p.f), load balancing, potential regulation etc. The international standard regulatory guidelines IEEE-519–2017 and IEC- 61,000–1 are imposed to evaluate the effectiveness of the simulation and d-SPACE-based experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig.13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

Abbreviations

\({N}_{1}, {N}_{1}, {N}_{3}\) :

Number of the turns of the primary, secondary and tertiary windings

\({i}_{sap}, {i}_{sbp}, {i}_{scp}\) :

Current in the primary winding of IFCT of a, b & c-phase

\({i}_{las}, {i}_{lbs}, {i}_{lcs}\) :

Current in the secondary winding of IFCT of a, b & c-phase

\({i}_{caf}, {i}_{cbf}, {i}_{ccf}\) :

Current in the tertiary winding of IFCT of a, b & c-phase

\({Z}_{sa}, {Z}_{sb}, {Z}_{sc}\) :

Total impedance of source and IFCT primary winding of a, b & c-phase

\({W}_{qa}^{n},{W}_{qb}^{n},{W}_{qc}^{n}\) :

Reactive component of load current

\({W}_{qa}^{i},{W}_{qb}^{i},{W}_{qc}^{i}\) :

Reactive ith component of load current

\({W}_{qa}^{n-1},{W}_{qb}^{n-1},{W}_{qc}^{n-1}\) :

Previous reactive component of load current

\({h}_{k}^{i-1}\) :

Previous ith component of somatic weight

\({b}_{j}^{i}\) :

E ith component of synaptic weight

\({W}_{pa}^{n},{W}_{pb}^{n},{W}_{pc}^{n}\) :

Active component of load current

\({W}_{pa}^{i},{W}_{pb}^{i},{W}_{pc}^{i}\) :

Active ith component of load current

\({W}_{pa}^{n-1},{W}_{pb}^{n-1},{W}_{pc}^{n-1}\) :

Previous active component of load current

\(\sigma\) :

Step size

\({u}_{pa}^{n},{u}_{pb}^{n},{u}_{pc}^{n}\) :

In-phase unit voltage templates of the nth component

\({u}_{qa}^{n},{u}_{qb}^{n},{u}_{qc}^{n}\) :

Quadrature unit voltage templates of the nth component

\({v}_{sa}, {v}_{sb}, {v}_{sc}\) :

Phase voltage

\({v}_{t}\) :

PCC voltage

\({w}_{cp}\) :

Output weight of DC side PI controller

\({w}_{sp}\) :

Total reactive weight of the reference source current

\({w}_{a}\) :

Active average value

\({k}_{pa}\) :

DC side Proportional controller

\({k}_{ia}\) :

DC side Integral controller

\({w}_{cq}\) :

Output weight of AC side PI controller

\({k}_{pr}\) :

AC side Proportional controller

\({k}_{ir}\) :

AC side Integral controller

\({v}_{te}\) :

Error voltage

\({w}_{sq}\) :

Total reactive weight of the reference source current

\({w}_{r}\) :

Reactive average value

\({i}_{aa},{i}_{ab}, {i}_{ac}\) :

Active part of the reference source currents

\({i}_{ra}, {i}_{rb}, {i}_{rc}\) :

Reactive part of the reference source currents

\({i}_{sa}^{*}, {i}_{sb}^{*}, {i}_{sc}^{*}\) :

Total reference source currents

CBEMA:

Computer Business Equipment and Manufacturing Association

CB:

Circuit Breaker

DBLN:

Deep Belief Learning Network

DSTATCOM:

Distributed Static Compensator

DC-DSTATCOM:

Directly Coupled Distributed Static Compensator

FW:

Filtering Winding

HCC:

Hysteresis Current Controller

IFCT:

Inductively Filtering Converting Transformer

IGBT:

Insulated Gate Bipolar Transistor

NN:

Neural Network

PCC:

Point of Common Coupling

PDN:

Power Distribution Network

P.F:

Power Factor

PQ:

Power Quality

PW:

Primary Winding

SW:

Secondary Winding

THD:

Total Harmonic Distortion

VSI:

Voltage Source Inverter

References

  1. Kumar, C., Mishra, M.K.: Operation and control of an improved performance interactive DSTATCOM. IEEE Trans. Industr. Electron. 62(10), 6024–6034 (2015)

    Article  Google Scholar 

  2. Arya, S.R., Niwas, R., Bhalla, K.K., Singh, B., Chandra, A., Al-Haddad, K.: Power quality improvement in isolated distributed power generating system using DSTATCOM. IEEE Trans. Ind. Appl. 51(6), 4766–4774 (2015)

    Article  Google Scholar 

  3. Xu, C., Dai, K., Chen, X., Kang, Y.: Unbalanced PCC voltage regulation with positive- and negative-sequence compensation tactics for MMC-DSTATCOM. IET Power Electronics 9(15), 2846–2858 (2016)

    Article  Google Scholar 

  4. Mangaraj, M., Panda, A.K., Penthia, T. Supercapacitor supported DSTATCOM for harmonic reduction and power factor correction. IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 1–6, (2016).

  5. Mangaraj, M., Panda, A.K. and Penthia, T. Investigating the performance of DSTATCOM using ADALINE based LMS algorithm, IEEE 6th International Conference on Power Systems (ICPS), 1–5 (2016).

  6. Mangaraj, M., Thakur, R.V., Mishra, S.K., Sabat, J., Patra, A. PQ Analysis of T-VSI and ICT-VSI with Their Impacts on 3-P 3-W Utility System, Smart Technologies for Power and Green Energy (STPGE). Lecture Notes in Networks and Systems, Springer, Singapore, 443, (2023), https://doi.org/10.1007/978-981-19-2764-5_13

  7. Mangaraj, M., Panda, A.K.: Performance analysis of DSTATCOM employing various control algorithms. IET Gener. Transm. Distrib. 11(10), 2643–2653 (2017)

    Article  Google Scholar 

  8. Mangaraj, M., Panda, A.K.: DSTATCOM deploying CGBP based icosϕ neural network technique for power conditioning. Ain Shams Engg. J. 9(4), 1535–1546 (2018)

    Article  Google Scholar 

  9. Cupertino, AF., Farias, JVM., and Pereira, HA. Comparison of DSCC and SDBC modular multilevel converters for STATCOM application during negative sequence compensation, IEEE Transactions on Industrial Electronics, 66 ( 3), 2302–2312 (2019).

  10. Mangaraj, M. and Panda, A K. Modelling and simulation of KHLMS algorithm-based DSTATCOM, IET Power Electronics, 12 (9), 2304–2311 (2019).

  11. Zhong, C., Chen, Q., **g, Z.: Active dam** method-based self-adjust notch filter for current source converter. J. Eng. 11, 8236–8244 (2019)

    Article  Google Scholar 

  12. Mangaraj, M., Panda, A.K., Penthia, T., Dash, A.R.: An adaptive LMBP training based control technique for DSTATCOM. IET Gener. Transm. Distrib. 14(3), 516–524 (2020)

    Article  Google Scholar 

  13. Sabat, J., Mangaraj, M.: Experimental Study of T-I-VSI-Based DSTATCOM Using ALMS Technique for PQ Analysis. J. Inst. Eng. India Ser. B 104, 165–174 (2023). https://doi.org/10.1007/s40031-022-00812-9

    Article  Google Scholar 

  14. Khodayar. M., Liu, G., Wang, J. and Khodayar, ME. Deep learning in power systems research: A review, CSEE Journal of Power and Energy Systems, 7 (2), 209–220 (2021).

  15. Babu, P. N., Guerrero, JM., Siano, P., Peesapati, R. and Panda, G. An improved adaptive control strategy in grid-tied pv system with active power filter for power quality enhancement, IEEE Systems Journal, 15 (2), 2859–2870 (2021).

  16. Fei, J. and Wang, H. Experimental Investigation of Recurrent Neural Network Fractional-Order Sliding Mode Control of Active Power Filter, IEEE Transactions on Circuits and Systems II: Express Briefs, 200; 67 ( 11), 2522–2526 (2020).

  17. Fei, J., Chu, Y.: Double hidden layer output feedback neural adaptive global sliding mode control of active power filter. IEEE Trans. Power Electron. 35(3), 3069–3084 (2020)

    Article  Google Scholar 

  18. Lin, F., Tan, K., Lai, Y., Luo, W.: Intelligent PV power system with unbalanced current compensation using CFNN-AMF. IEEE Trans. Power Electron. 34(9), 8588–8598 (2019)

    Article  Google Scholar 

  19. Fei, J., Chen, Y.: Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network. IEEE Trans. Power Electron. 35(9), 9904–9922 (2020)

    Article  Google Scholar 

  20. Fei, J., Wang, H., Fang, Y.: Novel neural network fractional-order sliding-mode control with application to active power filter. IEEE Trans. Syst. Man Cybernet. 52(6), 3508–3518 (2022)

    Article  Google Scholar 

  21. Faiz, M.T., et al.: Capacitor voltage dam** based on parallel feedforward compensation method for LCL-filter grid-connected inverter. IEEE Trans. Ind. Appl. 56(1), 837–849 (2020)

    Article  Google Scholar 

  22. Fei, J., Liu, L.: Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator. IEEE Trans. Industr. Electron. 69(8), 8366–8376 (2022)

    Article  Google Scholar 

  23. Peng, L., Wu, W., Hu, K.: A multicell network control and design for three-phase grid-connected inverter. IEEE Trans. Industr. Electron. 68(4), 2740–2749 (2021)

    Article  Google Scholar 

  24. Khodayar, M., Wang, J.: Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans. Sustain. Energy 10(2), 670–681 (2019)

    Article  Google Scholar 

  25. Balouji, E., Backstrom, K., McKelvey, T., Salor, O.: Deep-learning-based harmonics and interharmonics predetection designed for compensating significantly time-varying EAF currents. IEEE Trans. Ind. Appl. 56(3), 3250–3260 (2020)

    Article  Google Scholar 

  26. Balouji, E., Salor, O., McKelvey, T.: Deep learning based predictive compensation of flicker, voltage dips, harmonics and interharmonics in electric arc furnaces. IEEE Trans. Ind. Appl. 58(3), 4214–4224 (2022)

    Article  Google Scholar 

  27. Khodayar, M., Wang, J.: Probabilistic time-varying parameter identification for load modeling: a deep generative approach. IEEE Trans. Industr. Inf. 17(3), 1625–1636 (2021)

    Article  Google Scholar 

  28. Muneer, V., Biju, G.M., Bhattacharya, A.: Optimal machine-learning-based controller for shunt active power filter by auto machine learning. IEEE J. Emerging Selected Topics Power Electron. 11(3), 3435–3444 (2023)

    Article  Google Scholar 

  29. Liu, J., Wu, W., Chung, HSH. and Blaabjerg, F. Disturbance Observer-Based Adaptive Current Control With Self-Learning Ability to Improve the Grid Injected Current for LCL Filtered Grid-Connected Inverter, IEEE Access, 7 (0), 105376–105390 (2019).

  30. Kumar, N., Singh, B., Panigrahi, B.K.: PNKLMF-based neural network control and learning-based HC MPPT technique for multi objective grid integrated solar PV based distributed generating system. IEEE Trans. Industr. Inf. 15(6), 3732–3742 (2019)

    Article  Google Scholar 

  31. Shukl, P., Singh, B.: Delta-bar-delta neural-network-based control approach for power quality improvement of solar-PV-interfaced distribution system. IEEE Trans. Industr. Inf. 16(2), 790–801 (2020)

    Article  Google Scholar 

  32. Mangaraj, M., Bhoi, S.K., & Sabat, J. Deep Belief Learning Network Based IC- DSTATCOM For PQ Analysis. Int. J. Renew. Energy Res. 13(1), 184–191 (2023). https://doi.org/10.20508/ijrer.v13i1.13501.g8674

  33. Alizadeh, R., Allen, J.K., Mistree, F.: Managing computational complexity using surrogate models: a critical review. Res. Eng. Design 31, 275–298 (2020). https://doi.org/10.1007/s00163-020-00336-7

    Article  Google Scholar 

  34. Yang, J., Liu, Y., Bao, W., Wang, J., Li, X. and Ji, Z. A Regularized DBN Based on Fault Diagnosis Model for Inductively Coupled Plasma System. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 1653–1657 (2019), doi: https://doi.org/10.1109/CAC48633.2019.8996628

  35. Huang, W., Song, G., Hong, H., **e, K.: Deep architecture for traffic flow prediction: deep belief networks with Multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014). https://doi.org/10.1109/TITS.2014.2311123

    Article  Google Scholar 

  36. Men, C. R., Dow, D. E. and Ghanavati, A. Study of the Bus Voltage Magnitude to Monitor Power Quality in the Distribution System. 2022 IEEE Electrical Power and Energy Conference (EPEC), Victoria, BC, Canada, 18(33), 2022. doi: https://doi.org/10.1109/EPEC56903.2022.10000155

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogeswara Sabat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, J., Mangaraj, M., Kundala, P.K.Y. et al. Shunt compensation using Deep Belief Learning Network Based Inductively Coupled DSTATCOM. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00647-3

Keywords

Navigation