Log in

Experimental Study of T-I-VSI-Based DSTATCOM Using ALMS Technique for PQ Analysis

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

In this article, a neural network (NN)-based control strategy is utilized for the voltage source inverter (VSI) and combined with an appropriate transformer to enhance the shunt compensation capability and improve the reliable operation. The transformer-interfaced VSI (T-I-VSI)-based distributed static compensator (DSTATCOM) exhibits unique advantages, such as boost capability (secondary of transformer is star connected), reduced voltage stress, and simple circuit operation to produce distortion-free sinusoidal current waveform. An efficient approach is for improving active power filtering like increase in reactive power compensation capability, harmonic reduction, power factor (p.f) improvement, voltage balancing, and better voltage regulation in three-phase electrical distribution system using T-I-VSI-based adaptive least mean square NN algorithms. Finally, the strength and effectiveness of the T-I-VSI is verified by using MATLAB/Simulink software and also, experimental investigation using hardware setup and SPARTAN-6 field-programmable gate arrays controller. The power quality issues mitigation comparisons are also performed considering the standard value of the IEEE-2030-7-2017 and IEC- 61000-1 grid code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({i}_{\mathrm{aa}}, {i}_{\mathrm{ab}}, {i}_{\mathrm{ac}}\) :

Active component of each phase

ALMS:

Adaptive least mean square

\({i}_{\mathrm{sa},}{i}_{\mathrm{sb}},{i}_{\mathrm{sc}}\) :

Actual source currents

\({w}_{\mathrm{pa}},{w}_{\mathrm{pb}},{w}_{\mathrm{pc}}\) :

Active updated weight of load current

\({v}_{\mathrm{te}}\) :

AC voltage error

\({i}_{\mathrm{ca}}\) , \({i}_{\mathrm{cb}}\) , \({i}_{\mathrm{cc}}\) :

Compensating currents

\({v}_{\mathrm{dc}}\) :

DC link voltage

DSTATCOM:

Distribution static compensator

\({v}_{\mathrm{de}}\) :

DC voltage error

EDS:

Electrical distribution system

FPGA:

Field-programmable gate array

\({w}_{\mathrm{qa}},{w}_{\mathrm{qb}},{w}_{\mathrm{qc}}\) :

Fundamental reactive component of load current

IGBT:

Insulated gate bipolar transistor

\({u}_{\mathrm{pa}}, {u}_{\mathrm{pb}}, {u}_{\mathrm{pc}}\) :

In-phase unit voltage templates

\({i}_{\mathrm{la}}\) , \({i}_{\mathrm{lb}}\) , \({i}_{\mathrm{lc}}\) :

Load currents

\({w}_{\mathrm{p}}\) :

Mean value of the active weighting values

\({w}_{\mathrm{q}}\) :

Mean value of the reactive weighting values

NN:

Neural network

PCC:

Point of common coupling

p.f:

Power factor

PQ:

Power quality

PI:

Proportional–integral

\({u}_{\mathrm{qa}}, {u}_{\mathrm{qb}}, {u}_{\mathrm{qc}}\) :

Quadrature unit voltage templates

\({i}_{\mathrm{sa}}^{*}, {i}_{\mathrm{sb}}^{*}, {i}_{\mathrm{sc}}^{*}\) :

Reference source currents

\({v}_{\mathrm{t} (\mathrm{ref})}\) :

Reference AC voltage

THD:

Total harmonic distortion

T-I-VSI:

Transformer-interfaced VSI

VSI:

Voltage source inverter

References

  1. J. Saroha, G. Pandove, M. Singh, Modelling and simulation of grid connected SPV system with active power filtering features. J. Inst. Eng. India Ser. B 99, 25–35 (2018). https://doi.org/10.1007/s40031-017-0293-5

    Article  Google Scholar 

  2. Z. Aleem, M. Hanif, Operational analysis of improved Γ-Z-Source inverter with clam** diode and its comparative evaluation. IEEE Trans. Industr. Electron. 64(12), 9191–9200 (2017)

    Article  Google Scholar 

  3. B. Singh, P. Jayaprakash, D.P. Kothari, A. Chandra, K.A. Haddad, Comprehensive study of DSTATCOM configurations. IEEE Trans. Industr. Inf. 10(2), 854–870 (2014)

    Article  Google Scholar 

  4. Q. Lei, F.Z. Peng, Space vector pulsewidth amplitude modulation for a buck-boost voltage/current source inverter. IEEE Trans. Power Electron. 29(1), 266–274 (2014)

    Article  Google Scholar 

  5. M.E. Ibrahim, A.S. Mansour, A.M. Abd-Elhady, A novel single-stage single-phase buck–boost inverter. Electr Eng 99, 345–356 (2017)

    Article  Google Scholar 

  6. F.Z. Peng, Z-source inverter. IEEE Trans. Ind. Appl. 39, 504–510 (2003)

    Article  Google Scholar 

  7. A. Abdelhakim, F. Blaabjerg, P. Mattavelli, Modulation schemes of the three-phase impedance source inverters—Part I: classification and review. IEEE Trans. Industr. Electron. 65(8), 6309–6320 (2018)

    Article  Google Scholar 

  8. A. Abdelhakim, F. Blaabjerg, P. Mattavelli, Modulation schemes of the three-phase impedance source inverters—Part II: comparative assessment. IEEE Trans. Industr. Electron. 65(8), 6321–6332 (2018)

    Article  Google Scholar 

  9. E. Babaei, H. Abu-Rub, H.M. Suryawanshi, Z-source converters: topologies, modulation techniques, and application-part I. IEEE Trans. Industr. Electron. 65(6), 5092–5095 (2018)

    Article  Google Scholar 

  10. Y. Liu, B. Abu-Rub, H. Ge, F.Z. Peng, Overview of space vector modulations for three-phase Z-Source/Quasi-Z-Source inverters. IEEE Trans. Power Electron. 29(4), 2098–2108 (2014)

    Article  Google Scholar 

  11. Y. Li, S. Jiang, J.G. Cintron-Rivera, F.Z. Peng, Modeling and control of quasi-Z-source inverter for distributed generation applications. IEEE Trans. Industr. Electron. 60(4), 1532–1541 (2013)

    Article  Google Scholar 

  12. K.H. Law, An Effective voltage controller for quasi-Z-source inverter-based STATCOM with constant DC-link voltage. IEEE Trans. Power Electron. 33(9), 8137–8150 (2018)

    Article  Google Scholar 

  13. M. Nguyen, Y. Lim, G. Cho, Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), 3183–3191 (2011)

    Article  Google Scholar 

  14. H.F. Ahmed, H. Cha, S. Kim, H. Kim, Switched-coupled-inductor quasi-Z-source inverter,". IEEE Trans. Power Electron. 31(2), 1241–1254 (2016)

    Article  Google Scholar 

  15. C.B. Carlos Jacobina, J.P.R.A. Méllo, E.C.D. Santos, Shunt active power filter based on cascaded transformers coupled with three-phase bridge converters. IEEE Trans. Ind. Appl. 53(5), 4673–4681 (2017)

    Article  Google Scholar 

  16. Y. Li, T.K. Saha, O. Krause, Y. Cao, C. Rehtanz, An inductively active filtering method for power-quality improvement of distribution networks with nonlinear loads. IEEE Trans. Power Delivery 28(4), 2465–2473 (2013)

    Article  Google Scholar 

  17. M.A. Elsaharty, J. Rocabert, J.I. Candela, P. Rodriguez, Three-phase custom power active transformer for power flow control applications. IEEE Trans. Power Electron. 34(3), 2206–2219 (2019)

    Article  Google Scholar 

  18. M. Mangaraj, V.D. Naidu, K. Priyanka, J. Sabat, Comparative analysis between inductor coupled T type split and self supported capacitor based DSTATCOM 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) (Gunupur Odisha, India, 2020), pp.1–5

    Google Scholar 

  19. R. Kalpana, G. Bhuvaneswari, B. Singh, Power quality improvement in switched mode power supplies using autoconnected transformer based 9-phase ac-dc converters. IETE J. Res. 56(5), 270 (2010). https://doi.org/10.4103/0377-2063.72782

    Article  Google Scholar 

  20. E. Lei, X. Yin, Z. Zhang, Y. Chen, An improved transformer winding tap injection DSTATCOM topology for medium-voltage reactive power compensation. IEEE Trans. Power Electron. 33(3), 2113–2126 (2018)

    Article  Google Scholar 

  21. P. **ng-Si, T.H. Nguyen, D.-C. Lee, K.-B. Lee, J.-M. Kim, Fault diagnosis of DC-link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance. IEEE Trans. Ind. Electron. 60(9), 4118–4127 (2013)

    Article  Google Scholar 

  22. H. Wang, F. Blaabjerg, Reliability of capacitors for DC-link applications in power electronic converters–an overview. IEEE Trans. Ind. Appl. 50(5), 3569–3578 (2014)

    Article  Google Scholar 

  23. G.A. de Almeida Carlos, C.B. Jacobina, E.C. dos Santos, Alternative breed of three-phase four-wire shunt compensators based on the cascaded transformer with single DC link. IEEE Trans. Ind. Appl. 54(3), 2492–2505 (2018)

    Article  Google Scholar 

  24. A. Aghazadeh, M. Davari, H. Nafisi, F. Blaabjerg, Grid integration of a dual two-level voltage-source inverter considering grid impedance and phase-locked loop. IEEE J. Emerg. Sel. Topics Power Electron. 9(1), 401–422 (2021)

    Article  Google Scholar 

  25. D. Masand, S. Jain, G. Agnihotri, Control strategies for distribution static compensator for power quality improvement. IETE J. Res. 54(1), 421–428 (2008)

    Article  Google Scholar 

  26. M. Mangaraj, A.K. Panda, Modelling and simulation of KHLMS algorithm-based DSTATCOM. IET Power Electron. 12(9), 2304–2311 (2019)

    Article  Google Scholar 

  27. M. Mangaraj, A.K. Panda, Performance analysis of DSTATCOM employing various control algorithms. IET Gener. Transm. Distrib. 11(10), 2643–2653 (2017)

    Article  Google Scholar 

  28. R.K. Agarwal, I. Hussain, B. Singh, Application of LMS-Based NN structure for power quality enhancement in a distribution network under abnormal conditions. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1598–1607 (2019)

    Article  Google Scholar 

  29. A.K. Panda, M. Mangaraj, DSTATCOM employing hybrid neural network control technique for power quality improvement. IET Power Electron. 10(4), 480–489 (2017)

    Article  Google Scholar 

  30. M. Mangaraj, J. Sabat, MVSI and AVSI-supported DSTATCOM for PQ analysis. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1920850

    Article  Google Scholar 

  31. J. Sabat, M. Mangaraj, Operation and control performance of interactive DZSI-based DSTATCOM. J. Inst. Eng. India Ser. B 103, 1259–1267 (2022). https://doi.org/10.1007/s40031-022-00730-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Science and Engineering Research Board (SERB-DST), Govt. of India, under SRG (Sanction No. SERB/F/8504/2019-2020).

Funding

This research received funding support from Science and Engineering Research Board (SERB-DST), Govt. of India, under SRG (Sanction No. SERB/F/8504/2019-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogeswara Sabat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, J., Mangaraj, M. Experimental Study of T-I-VSI-Based DSTATCOM Using ALMS Technique for PQ Analysis. J. Inst. Eng. India Ser. B 104, 165–174 (2023). https://doi.org/10.1007/s40031-022-00812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00812-9

Keywords

Navigation