Log in

Improvement of the Oxidation Stability of Biodiesel from Waste Cooking Oil Using Various Antioxidants

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Efforts to meet the constantly increasing global energy demand without adverse environmental impacts have led to the development of alternative energy sources. Biodiesel, a biomass alternative, has been identified as a source with a potential substitute for fossil fuel-derived diesel for transportation purposes. Oxidation degradation is one of the primary obstacles hindering the commercialization of biodiesel, which has been established as a viable alternative to diesel derived from fossil fuels. In this research, the Rancimat method is used to find out how well three antioxidants—vitamins A, C, and E—improve the stability of biodiesel made from waste cooking oil. At a concentration of 1000 ppm, the selected antioxidants improved the oxidation stability of biodiesel. Vitamin C improved the waste cooking oil biodiesel induction period from 0.79 to 7 h most effectively. These results are because of the low bond dissociation energy (318.5 kJ/mol), the molecular weight (176.16 g/mol), and the formation of acetyl palmitate, known to possess antioxidant properties in oils. When antioxidants A and C (induction period = 12.9 h) and C and E (induction period = 7 h) were combined in a ratio of 1:1, they were more effective. The combination of A and E negatively affected the oxidation stability of waste cooking oil biodiesel, resulting in an induction period of 0.33 h. Herein, the present research has demonstrated that using antioxidant C, either alone or in conjunction with other natural antioxidants, positively impacts the oxidation stability of waste cooking oil biodiesel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ritchie, H., Roser, M., Rosado, P., Fossil Fuels.: Our World in Data 2020. https://ourworldindata.org/energy (accessed October 14, 2022)

  2. Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O.: A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 61, 276–297 (2014). https://doi.org/10.1016/J.BIOMBIOE.2013.11.014

    Article  Google Scholar 

  3. Ma, F., Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  Google Scholar 

  4. Alsultan, A.G., Asikin-Mijan, N., Ibrahim, Z., Yunus, R., Razali, S.Z., Mansir, N., et al.: A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts 11, 1261 (2021). https://doi.org/10.3390/CATAL11111261

    Article  Google Scholar 

  5. Romola, C.V.J., Meganaharshini, M., Rigby, S.P., Moorthy, I.G., Kumar, R.S., Karthikumar, S.: A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renew. Sustain. Energy Rev. 145, 111109 (2021). https://doi.org/10.1016/J.RSER.2021.111109

    Article  Google Scholar 

  6. De Menezes, L.C., De Sousa, E.R., Da Silva, G.S., Marques, A.L.B., Viegas, H.D.C., Dos Santos, M.J.C.: Investigations on Storage and Oxidative Stability of Biodiesel from Different Feedstocks Using the Rancimat Method, Infrared Spectroscopy, and Chemometry. ACS Omega 7, 30746–30755 (2022). https://doi.org/10.1021/ACSOMEGA.2C01348/ASSET/IMAGES/LARGE/AO2C01348_0011.JPEG

    Article  Google Scholar 

  7. Bondioli, P., Gasparoli, A., Della Bella, L., Tagliabue, S., Toso, G.: Biodiesel stability under commercial storage conditions over one year. Eur. J. Lipid Sci. Technol. 105, 735–741 (2003). https://doi.org/10.1002/EJLT.200300783

    Article  Google Scholar 

  8. Kumar, G., Kumar, D., Poonam, Johari, R., Singh, CP.: Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication. Ultrason Sonochem. 18:923–7 (2011) https://doi.org/10.1016/j.ultsonch.2011.03.004

  9. Kumar, N.: Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 190, 328–350 (2017). https://doi.org/10.1016/j.fuel.2016.11.001

    Article  Google Scholar 

  10. Knothe, G., Dunn, R.O.: Dependence of Oil Stability Index of Fatty Compounds on Their Structure and Concentration and Presence of Metals. JAOCS, J. Am. Oil. Chem. Soc. 80, 1021–1026 (2003). https://doi.org/10.1007/S11746-003-0814-X

    Article  Google Scholar 

  11. Bannister, C.D., Chuck, C.J., Bounds, M., Hawley, J.G.: Oxidative Stability of Biodiesel Fuel. J. Autom. Eng. 225, 99–114 (2010). https://doi.org/10.1243/09544070JAUTO1549

    Article  Google Scholar 

  12. Stavinoha, L.L., Howell, S.: Potential Analytical Methods for Stability Testing of Biodiesel and Biodiesel Blends. J. Fuels. Lubric. 108, 1566–1580 (1999)

    Google Scholar 

  13. Pullen, J., Saeed, K.: Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process. Technol. 125, 223–235 (2014). https://doi.org/10.1016/J.FUPROC.2014.03.032

    Article  Google Scholar 

  14. Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950 (2012)

    Article  Google Scholar 

  15. Amran, N.A., Bello, U., Hazwan Ruslan, M.S.: The role of antioxidants in improving biodiesel’s oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review. Heliyon 8, 1–16 (2022). https://doi.org/10.1016/J.HELIYON.2022.E09846

    Article  Google Scholar 

  16. Monyem, A., Van Gerpen, J.H.: The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenergy 20, 317–325 (2001). https://doi.org/10.1016/S0961-9534(00)00095-7

    Article  Google Scholar 

  17. Ondul, E., Dizge, N., Keskinler, B., Albayrak, N.: Biocatalytic production of biodiesel from vegetable oils. Biofuels-Status and Perspective 5(3), 16–20 (2015)

  18. Jain, S., Sharma, M.P.: Stability of biodiesel and its blends: A review. Renew. Sustain. Energy Rev. 14, 667–678 (2010)

    Article  Google Scholar 

  19. Buosi, G.M., Da Silva, E.T., Spacino, K., Silva, L.R.C., Ferreira, B.A.D., Borsato, D.: Oxidative stability of biodiesel from soybean oil: Comparison between synthetic and natural antioxidants. Fuel 181, 759–764 (2016). https://doi.org/10.1016/j.fuel.2016.05.056

    Article  Google Scholar 

  20. Kivevele, T.: Storage and thermal stability of biodiesel produced from manketti nut oil of Southern Africa origin with the influence of metal contaminants and antioxidants. SN Appl Sci 2, 1–10 (2020)

    Article  Google Scholar 

  21. Mittelbach, M., Schober, S.: The influence of antioxidants on the oxidation stability of biodiesel. JAOCS, J. Am. Oil. Chem. Soc. 80, 817–823 (2003). https://doi.org/10.1007/S11746-003-0778-X

    Article  Google Scholar 

  22. Agarwal, A.K., Khurana, D., Dhar, A.: Improving oxidation stability of biodiesels derived from Karanja, Neem and Jatropha: Step forward in the direction of commercialization. J. Clean. Prod. 107, 646–652 (2015). https://doi.org/10.1016/j.jclepro.2015.05.055

    Article  Google Scholar 

  23. Varatharajan, K., Pushparani, D.S.: Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 82, 2017–2028 (2018)

    Article  Google Scholar 

  24. Pantoja, S.S., Da Conceição, L.R V., Da Costa, C.E.F., Zamian, J.R., Da Rocha, Filho, GN.:Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation. Energy Convers Manag 2013;74:293–8 https://doi.org/10.1016/j.enconman.2013.05.025

  25. Ramalingam, S., Govindasamy, M., Ezhumalai, M., Kaliyaperumal, A.: Effect of leaf extract from Pongamia pinnata on the oxidation stability, performance and emission characteristics of calophyllum biodiesel. Fuel 180, 263–269 (2016). https://doi.org/10.1016/j.fuel.2016.04.046

    Article  Google Scholar 

  26. Liang, Y.C., May, C.Y., Foon, C.S., Ngan, M.A., Hock, C.C., Basiron, Y.: The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85, 867–870 (2006)

    Article  Google Scholar 

  27. Huang, J., Yang, J., Msangi, S., Rozelle, S., Weersink, A.: Biofuels and the poor: Global impact pathways of biofuels on agricultural markets. Food Policy 37, 439–451 (2012). https://doi.org/10.1016/j.foodpol.2012.04.004

    Article  Google Scholar 

  28. Saluja, R.K., Kumar, V., Sham, R.: Stability of biodiesel – A review. Renew. Sustain. Energy Rev. 62, 866–881 (2016). https://doi.org/10.1016/j.rser.2016.05.001

    Article  Google Scholar 

  29. Scherer, M.D., Oliveira, S.L., Lima, S.M., Andrade, L.H.C., Caires, A.R.L.: Determination of the biodiesel content in diesel/biodiesel blends: A method based on fluorescence spectroscopy. J. Fluoresc. 21, 1027–1031 (2011). https://doi.org/10.1007/S10895-010-0815-X

    Article  Google Scholar 

  30. Focke, W.W., Van Der, W.I., Grobler, A.B.L., Nshoane, K.T., Reddy, J.K., Luyt, A.S.: The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel 94, 227–233 (2012). https://doi.org/10.1016/j.fuel.2011.11.061

    Article  Google Scholar 

  31. Xu, DP., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng J et al.: Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci. (2017):18. https://doi.org/10.3390/ijms18010096

  32. Şahin, S., Elhussein, E., Gülmez, Ö., Kurtulbaş, E., Yazar, S.: Improving the quality of vegetable oils treated with phytochemicals: a comparative study. J Food Sci Technol. (2020):57. https://doi.org/10.1007/s13197-020-04428-z

  33. Tang, H., Wang, A., Salley, S.O., Ng, K.Y.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. JAOCS, J. Am. Oil. Chem. Soc. 85, 373–382 (2008). https://doi.org/10.1007/S11746-008-1208-Z

    Article  Google Scholar 

  34. Moser, B.R.: Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. JAOCS, J Am Oil Chem Soc. 86, 699–706 (2009). https://doi.org/10.1007/S11746-009-1376-5/FIGURES/6

    Article  Google Scholar 

  35. Uğuz, G., Atabani, AE,. Mohammed, MN., Shobana, S., Uğuzm S., Kumarm G., et al.: Fuel stability of biodiesel from waste cooking oil: A comparative evaluation with various antioxidants using FT-IR and DSC techniques. Biocatal Agric Biotechnol. (2019):21. https://doi.org/10.1016/j.bcab.2019.101283

  36. De Sousa, L.S., De Moura, C.V.R., De Oliveira, J.E., De Moura, E.M.: Use of natural antioxidants in soybean biodiesel. Fuel 134, 420–428 (2014). https://doi.org/10.1016/j.fuel.2014.06.007

    Article  Google Scholar 

  37. Devi, A., Das, V.K., Deka, D.: Ginger extract as a nature based robust additive and its influence on the oxidation stability of biodiesel synthesized from non-edible oil. Fuel 187, 306–314 (2017). https://doi.org/10.1016/j.fuel.2016.09.063

    Article  Google Scholar 

  38. Math, M.C., Kumar, S.P., Chetty, S.V.: Technologies for biodiesel production from used cooking oil — A review. Energy Sustain. Dev. 14, 339–345 (2010). https://doi.org/10.1016/J.ESD.2010.08.001

    Article  Google Scholar 

  39. Knothe, G., Steidley, K.R.: A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresour. Technol. 100, 5796–5801 (2009). https://doi.org/10.1016/J.BIORTECH.2008.11.064

    Article  Google Scholar 

  40. Gaur, A., Mishra, S., Chowdhury, S., Baredar, P., Verma, P.: A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Mater Today Proc 46, 5594–5600 (2021). https://doi.org/10.1016/J.MATPR.2020.09.432

    Article  Google Scholar 

  41. Vidigal, I.G., Siqueira, A.F., Melo, M.P., Giordani, D.S., da Silva, M.L.C.P., Cavalcanti, E.H.S., et al.: Applications of an electronic nose in the prediction of oxidative stability of stored biodiesel derived from soybean and waste cooking oil. Fuel 284, 119024 (2021). https://doi.org/10.1016/J.FUEL.2020.119024

    Article  Google Scholar 

  42. Tshizanga, N., Funmilayo Aransiola, E., Oyekola, O.: Optimisation of biodiesel production from waste vegetable oil and eggshell ash. S. Afr. J. Chem. Eng. 23, 145–156 (2017). https://doi.org/10.1016/j.sajce.2017.05.003

    Article  Google Scholar 

  43. Dao, D.Q., Ngo, T.C., Thong, N.M., Nam, P.C.: Is Vitamin A an Antioxidant or a Pro-oxidant? J. Phys. Chem. B 121, 9348–9357 (2017). https://doi.org/10.1021/ACS.JPCB.7B07065/ASSET/IMAGES/LARGE/JP-2017-07065G_0006.JPEG

    Article  Google Scholar 

  44. Njus, D., Kelley, P.M., Tu, Y.J., Schlegel, H.B.: Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 159, 37–43 (2020). https://doi.org/10.1016/J.FREERADBIOMED.2020.07.013

    Article  Google Scholar 

  45. Pehlivan, F.E., Vitamin C: An Antioxidant Agent. In: Hamza AH, editor. Vitamin C, IntechOpen; (2017). https://doi.org/10.5772/INTECHOPEN.69660 

  46. Rychter, A.M., Hryhorowicz, S., Słomski, R., Dobrowolska, A., Krela-Kaźmierczak, I.: Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity – A narrative review. Clin. Nutr. 41, 1557–1565 (2022). https://doi.org/10.1016/J.CLNU.2022.04.032

    Article  Google Scholar 

  47. Palace, V.P., Khaper, N., Qin, Q., Singal, P.K.: Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 26, 746–761 (1999). https://doi.org/10.1016/S0891-5849(98)00266-4

    Article  Google Scholar 

  48. Lucarini, M., Pedulli, G.F., Cipollone, M.: Bond Dissociation Enthalpy of α-Tocopherol and Other Phenolic Antioxidants. J. Org. Chem. 59, 5063–5070 (1994). https://doi.org/10.1021/jo00096a061

    Article  Google Scholar 

  49. Traber, M.G., Stevens, J.F.: Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51, 1000–1013 (2011). https://doi.org/10.1016/J.FREERADBIOMED.2011.05.017

    Article  Google Scholar 

  50. Pandithavidana, D.R., Jayawardana, S.B.: Comparative study of antioxidant potential of selected dietary vitamins. Computational Insights. Molecules 24, 1–9 (2019). https://doi.org/10.3390/molecules24091646

    Article  Google Scholar 

  51. Traber, M.G., Atkinson, J.: Vitamin E, Antioxidant and Nothing More. Free Radic. Biol. Med. 43, 4–15 (2007). https://doi.org/10.1016/J.FREERADBIOMED.2007.03.024

    Article  Google Scholar 

  52. Evgeny, D., Taisa, D.: Dissociation Energies of O − H Bonds of Phenols and Hydroperoxides 2010:1858–66

  53. Jebe, T.A., Matlock, M.G., Sleeter, R.T.: Collaborative study of the oil stability index analysis. J. Am. Oil Chem. Soc. 70, 1055–1061 (1993). https://doi.org/10.1007/BF02632142

    Article  Google Scholar 

  54. Erchamo, Y.S., Mamo, T.T., Workneh, G.A., Mekonnen, Y.S.: Improved biodiesel production from waste cooking oil with mixed methanol-ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci. Rep. 11, 1–12 (2021). https://doi.org/10.1038/s41598-021-86062-z

    Article  Google Scholar 

  55. Degfie, T.A., Mamo, T.T., Mekonnen, Y.S.: Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst. Scientific Reports (2019) 9:1 2019;9:1–8. https://doi.org/10.1038/s41598-019-55403-4 

  56. Sarno, M., Iuliano, M.: Biodiesel production from waste cooking oil. Green Processing and Synthesis 8, 828–836 (2019). https://doi.org/10.1515/GPS-2019-0053/DOWNLOADASSET/SUPPL/GPS-2019-0053_SM.PDF

    Article  Google Scholar 

  57. Susilowati, E., Hasan, A., Syarif, A.: Free Fatty Acid Reduction in a Waste Cooking Oil as a Raw Material for Biodiesel with Activated Coal Ash Adsorbent. J. Phys. Conf. Ser. 1167, 012035 (2019). https://doi.org/10.1088/1742-6596/1167/1/012035

    Article  Google Scholar 

  58. Fritsche, K.L.: Linoleic Acid, Vegetable Oils & Inflammation. Mo. Med. 111, 41–43 (2014)

    Google Scholar 

  59. Whelan, J., Fritsche, K.: Linoleic Acid. Adv. Nutrition 4, 311 (2013). https://doi.org/10.3945/AN.113.003772

    Article  Google Scholar 

  60. Yaakob, Z., Narayanan, B.N., Padikkaparambil, S., Unni, K.S., Akbar, P.M.: A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 35, 136–153 (2014). https://doi.org/10.1016/J.RSER.2014.03.055

    Article  Google Scholar 

  61. Chhetri, A.B., Watts, K.C., Islam, M.R.: Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies 2008, Vol 1, Pages 3–18 2008;1:3–18. https://doi.org/10.3390/EN1010003 

  62. Rashed, M.M., Kalam, M.A., Masjuki, H.H., Rashedul, H.K., Ashraful, A.M., Shancita, I., et al.: Stability of biodiesel, its improvement and the effect of antioxidant treated blends on engine performance and emission. RSC Adv. 5, 36240–36261 (2015). https://doi.org/10.1039/C4RA14977G

    Article  Google Scholar 

  63. Bondioli, P., Gasparoli, A., Lanzani, A., Fedeli, E., Veronese, S., Sala, M.: Storage stability of biodiesel. J. Am. Oil Chem. Soc. 72, 699–702 (1995). https://doi.org/10.1007/BF02635658

    Article  Google Scholar 

  64. Lin, C.Y., Lin, H.A., Hung, L.B.: Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel 85, 1743–1749 (2006). https://doi.org/10.1016/J.FUEL.2006.03.010

    Article  Google Scholar 

  65. McCormick, R.L., Ratcliff, M., Moens, L., Lawrence, R.: Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process. Technol. 88, 651–657 (2007). https://doi.org/10.1016/J.FUPROC.2007.01.006

    Article  Google Scholar 

  66. Khounani, Z., Hosseinzadeh-Bandbafha, H., Nizami, A.S., Sulaiman, A., Goli, S.A.H., Tavassoli-Kafrani, E., et al.: Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel. Renew. Sustain. Energy Rev. 119, 109588 (2020)

    Article  Google Scholar 

  67. Nagarajan, J., Narayanasamy, B.: Effects of natural antioxidants on the oxidative stability of waste cooking oil biodiesel. Biofuels 12, 485–494 (2020). https://doi.org/10.1080/17597269.2019.1711320

    Article  Google Scholar 

  68. Bharti, R., Singh, B.: Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel 262, 116658 (2020)

    Article  Google Scholar 

  69. Kim, J.K., Jeon, C.H., Lee, H.W., Park, Y.K, Min K il., Hwang, I ha., et al.: Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils. Energies (2018) 11, 3514 2018;11:3514. https://doi.org/10.3390/EN11123514

  70. PubChem. Ascorbic acid. National Center for Biotechnology Information 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Ascorbic-acid (accessed December 29, 2021)

  71. Othmer, K.: Encyclopedia of Chemical Technology. 2nd ed. New York: John Wiley & Sons; 1969. https://doi.org/10.1002/0471238961

  72. O’Neil, MJ.: The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th ed. New Jersey: Merck and Co. Inc.; (2013). https://doi.org/10.1007/s13398-014-0173-7.2

  73. Lewis, RJ.: Hawley’s Condensed Chemical Dictionary. 15th ed. American Chemical Society ; (2007).https://doi.org/10.1021/JA0769144

  74. Park, S.H., Khan, N., Lee, S., Zimmermann, K., Derosa, M., Hamilton, L., et al.: Biodiesel Production from Locally Sourced Restaurant Waste Cooking Oil and Grease: Synthesis, Characterization, and Performance Evaluation. ACS Omega 4, 7775–7784 (2019)

    Article  Google Scholar 

  75. Rajamohan, S., Hari Gopal, A., Muralidharan, K.R., Huang, Z., Paramasivam, B., Ayyasamy, T., et al.: Evaluation of oxidation stability and engine behaviors operated by Prosopis juliflora biodiesel/diesel fuel blends with presence of synthetic antioxidant. Sustainable Energy Technol. Assess. 52, 102086 (2022)

  76. Prankl, H.: Stability of Biodiesel. In: Knothe Gerhard, Van Gerpen JHarlan, Krahl J, editors. The Biodiesel Handbook, AOCS Publishing; (2005):134–43. https://doi.org/10.1201/9781439822357-11

  77. Waynick, JA.: Characterization of biodiesel oxidation and oxidation products: technical literature review. Lakewood: National Renewable Energy Laboratory; 2005

  78. Ramos, T.C.P.M., de Souza, E.F., Pina, C.C., Cavalheiro, A.A., Fiorucci, A.R., da Silva, M.S.: Evaluation of Natural Antioxidants Action in Oxidative Stability of Commercial Biodiesel. Orbital: Electronic J. Chem. 10, 26–30 (2018). https://doi.org/10.17807/orbital.v10i1.1027

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Emmanuel Kongolo and Oluwaseun Oyekola; Methodology: Emmanuel Kongolo and Oluwaseun Oyekola; Formal analysis and investigation: Emmanuel Kongolo; Writing—original draft preparation: Emmanuel Kongolo; Writing—review and editing: Emmanuel Kongolo, Alechine E. Ameh, Debbie De Jager and Oluwaseun Oyekola; Funding acquisition: Oluwaseun Oyekola; Resources: Oluwaseun Oyekola; Supervision: Oluwaseun Oyekola.

Corresponding author

Correspondence to Oluwaseun Oyekola.

Ethics declarations

Ethical Approval

This study did not involve human subjects or animals’ experiment and thus, did not require ethics approval.

Consent to Participate

Informed consent was not needed since the study did not involve individual participants.

Consent to Publish

Consent to publish is not applicable to this study.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

The issue of oxidation degradation poses a significant obstacle to biodiesel's industrial production and commercialization, and has received limited attention in research undertakings.

• The study used vitamins A, C, and E as antioxidants to prevent biodiesel oxidation.

• Vitamins A, C and E showed great potential to improve waste cooking oil biodiesel oxidation stability.

• Individual and blended (mixed with other vitamins) vitamin C extend the biodiesel stabilization period significantly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kongolo, E., Ameh, A.E., De Jager, D. et al. Improvement of the Oxidation Stability of Biodiesel from Waste Cooking Oil Using Various Antioxidants. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02561-w

Keywords

Navigation