Log in

Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Increasing world’s population, rapid urbanization, and modern lifestyle results in enormous generation of food bio-residues and wastes from various agricultural, household, and industrial activities. Approximately one-third of the total food produced is lost/wasted every year, according to the Food and Agriculture Organization (FAO) that represents a significant threat to food systems sustainability and environment. Multi-faceted and state-of-the-art solutions are continuously being explored and executed by research scientists, food industries, and government/non-government organizations to address the social, economic, and environmental concerns, depleted fossil fuel resources and climate change. Discarded food waste and bio-residues are enriched with a plethora of high-value biomolecules, such as Carbohydrates, lipids, lignin-based molecules, and proteins. These compounds are thought to exhibit a vast economic potential for transforming into a range of revenue sources, such as biofuels, biopolymers, organic acids, enzymes, nutraceuticals, and functional sugars etc. Enzyme-assisted bio-transformations have been stepped up as a sustainable valorization way for the effective treatment of such food waste. This approach is capable of efficient conversion of lignin-based food bio-residues into a large number of high-value bioproducts and industrial commodities given excellent catalytic performance, eco-sustainability, process stability, and amenability to commercial utility. This review spotlights recent and state-of-art information about food waste as a growing environmental burden, current practices, and enzyme-based valorization approaches to convert food waste into marketable products, including biofuels, prebiotics, biodegradable plastics, sweeteners, bioactive compounds, rare functional sugars, biosurfactants, etc. Current challenges, conclusive remarks, and future bioeconomy prospects are also discussed to accomplish the target goals of sustainable industrial production along with food waste minimization. In conclusion, enzymes' deployment might constitute an eco-friendly and sustainable solution for food waste management by producing high-value products.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giovannucci, D., Scherr, S.J., Nierenberg, D., Hebebrand, C., Shapiro, J., Milder, J., Wheeler, K.: Food and Agriculture: The Future of Sustainability, The Sustainable Development in the 21st Century (SD21) Report for Rio 20. United Nations, New York (2012)

    Google Scholar 

  2. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C.: Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)

    Google Scholar 

  3. Andler, S.M., Goddard, J.M.: Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. Npj. Sci. Food. 2, 1–11 (2018)

    Google Scholar 

  4. Garcia-Garcia, G., Stone, J., Rahimifard, S.: Opportunities for waste valorisation in the food industry—a case study with four UK food manufacturers. J. Clean. Prod. 211, 1339–1356 (2019)

    Google Scholar 

  5. Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R.: Food waste-to-energy conversion technologies: current status and future directions. Waste. Manag. 38, 399–408 (2015)

    Google Scholar 

  6. Mehmood, T., Nadeem, F., Qamar, S.A., Bilal, M., Iqbal, H.M.: Bioconversion of agro-industrial waste into value-added compounds. In: Sustainable bioconversion of waste to value added products, pp. 349–368. Springer, Cham (2021)

    Google Scholar 

  7. Neves, L., Ribeiro, R., Oliveira, R., Alves, M.: Enhancement of methane production from barley waste. Biomass. Bioener. 30, 599–603 (2006)

    Google Scholar 

  8. Sawayama, S., Inoue, S., Minowa, T., Tsukahara, K., Ogi, T.: Thermochemical liquidization and anaerobic treatment of kitchen garbage. J. Fermen. Bioeng. 83, 451–455 (1997)

    Google Scholar 

  9. Kim, H.J., Kim, S.H., Choi, Y.G., Kim, G.D., Chung, T.H.: Effect of enzymatic pretreatment on acid fermentation of food waste. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean. Tech. 81, 974–980 (2006)

    Google Scholar 

  10. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Google Scholar 

  11. Tsang, Y.F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y.S., Song, H., Kim, K.H., Kwon, E.E., Jeon, Y.J.: Production of bioplastic through food waste valorization. Environ. Int. 127, 625–644 (2019)

    Google Scholar 

  12. Pleissner, D., Lam, W.C., Sun, Z., Lin, C.S.K.: Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 137, 139–146 (2013)

    Google Scholar 

  13. Pleissner, D., Kwan, T.H., Lin, C.S.K.: Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour. Technol. 158, 48–54 (2014)

    Google Scholar 

  14. Karmee, S.K., Lin, C.S.K.: Valorisation of food waste to biofuel: current trends and technological challenges. Sustain. Chem. Processes. 2, 1–4 (2014)

    Google Scholar 

  15. Kumar, M.B., Gao, Y., Shen, W., He, L.: Valorisation of protein waste: an enzymatic approach to make commodity chemicals. Front. Chem. Sci. Eng. 9, 295–307 (2015)

    Google Scholar 

  16. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck, A.: Global food losses and food waste. Food and Agricultural Organization, Rome (2011)

    Google Scholar 

  17. Mehmood, T., Nadeem, F., Bilal, M., Iqbal, H.M.: Recent trends on the food wastes valorization to value-added commodities. In: Advanced technology for the conversion of waste into fuels and chemicals, pp. 171–196. Elsevier, Amsterdam (2021)

    Google Scholar 

  18. Reutter, B., Lant, P., Reynolds, C., Lane, J.: Food waste consequences: environmentally extended input-output as a framework for analysis. J. Clean. Prod. 153, 506–514 (2017)

    Google Scholar 

  19. Tonini, D., Albizzati, P.F., Astrup, T.F.: Environmental impacts of food waste: learnings and challenges from a case study on UK. Waste. Manag. 76, 744–766 (2018)

    Google Scholar 

  20. Calvo-Porral, C., Medín, A.F., Losada-Lopez, C.: Can marketing help in tackling food waste?: proposals in developed countries. J. Food. Prod. Market. 23, 42–60 (2017)

    Google Scholar 

  21. The Environmental Impact of Food Waste, https://moveforhunger.org/the-environmental-impact-of-food-waste/

  22. Melikoglu, M., Lin, C.S.K., Webb, C.: Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central. Euro. J. Eng. 3, 157–164 (2013)

    Google Scholar 

  23. McCarthy, B., Liu, H.B.: Food waste and the ‘green’consumer. Aust. Market. J. 25, 126–132 (2017)

    Google Scholar 

  24. Food, S.: Global initiative on food loss and waste reduction, key facts on food loss and waste you should know. Food and Agriculture Organization, United Nations, New York (2016)

    Google Scholar 

  25. Chen, H.S.: Environmental concerns and food consumption: what drives consumers’ actions to reduce food waste. J. Int. Food. Agribus. Market. 31, 273–292 (2019)

    Google Scholar 

  26. Graham-Rowe, E., Jessop, D.C., Sparks, P.: Identifying motivations and barriers to minimising household food waste. Resour. Conserv. Recycl. 84, 15–23 (2014)

    Google Scholar 

  27. Parfitt, J., Woodham, S., Swan, E., Castella, T., Parry, A.: Quantification of food surplus, waste, and related materials in the grocery supply chain. Waste. Resour. Action. Prog. (2016)

  28. Tromp, S.O., Haijema, R., Rijgersberg, H., Van der Vorst, J.G.: A systematic approach to preventing chilled-food waste at the retail outlet. Int. J. Prod. Econ. 182, 508–518 (2016)

    Google Scholar 

  29. Liljestrand, K.: Logistics solutions for reducing food waste. Int. J. Phys. Distrib. Logis. Manag. 47, 318 (2017)

    Google Scholar 

  30. Muriana, C.: A focus on the state of the art of food waste/losses issue and suggestions for future researches. Waste. Manag. 68, 557–570 (2017)

    Google Scholar 

  31. de Moraes, C.C., de Oliveira Costa, F.H., Pereira, C.R., da Silva, A.L., Delai, I.: Retail food waste: map** causes and reduction practices. J. Clean. Prod. 256, 120124 (2020)

    Google Scholar 

  32. Visschers, V.H., Wickli, N., Siegrist, M.: Sorting out food waste behaviour: a survey on the motivators and barriers of self-reported amounts of food waste in households. J. Environ. Psychol. 45, 66–78 (2016)

    Google Scholar 

  33. Parizeau, K., Von Massow, M., Martin, R.: Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. Waste. Manag. 35, 207–217 (2015)

    Google Scholar 

  34. Evans, D.: Beyond the throwaway society: ordinary domestic practice and a sociological approach to household food waste. Sociology 46, 41–56 (2012)

    Google Scholar 

  35. Radzyminska, M., Jakubowska, D., Staniewska, K.: Consumer attitude and behaviour towards food waste. J. Agribus. Rural. Develop. 39, 175–181 (2016)

    Google Scholar 

  36. Waitt, G., Phillips, C.: Food waste and domestic refrigeration: a visceral and material approach. Social. Cult. Geograp. 17, 359–379 (2016)

    Google Scholar 

  37. Secondi, L., Principato, L., Laureti, T.: Household food waste behaviour in EU-27 countries: a multilevel analysis. Food Policy 56, 25–40 (2015)

    Google Scholar 

  38. Silvennoinen, K., Katajajuuri, J.M., Hartikainen, H., Heikkila, L., Reinikainen, A.: Food waste volume and composition in Finnish households. Br. Food J. 116, 1058–1068 (2014)

    Google Scholar 

  39. Jayashree, C., Janshi, G., Yeom, I., Kumar, S.A., Banu, J.R.: Effect of low temperature thermo-chemical pretreatment of dairy waste activated sludge on the performance of microbial fuel cell. Int. J. Electrochem. Sci. 9, 5732–5742 (2014)

    Google Scholar 

  40. Rani, R.U., Kumar, S.A., Kaliappan, S., Yeom, I.T., Banu, J.R.: Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour. Technol. 103, 415–424 (2012)

    Google Scholar 

  41. Do, K.U., Banu, J.R., Chung, I.J., Yeom, I.T.: Effect of thermochemical sludge pretreatment on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. J. Chem. Technol. Biotech. 84, 1350–1355 (2009)

    Google Scholar 

  42. Banu, J.R., Merrylin, J., Usman, T.M., Kannah, R.Y., Gunasekaran, M., Kim, S.H., Kumar, G.: Impact of pretreatment on food waste for biohydrogen production: a review. Int. J. Hydrogen Energy 45, 18211–18225 (2020)

    Google Scholar 

  43. Vavouraki, A.I., Angelis, E.M., Kornaros, M.: Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste. Manag. 33, 740–745 (2013)

    Google Scholar 

  44. Prabhudessai, V.: Anaerobic digestion of food waste in a horizontal plug flow reactor. Birla Institute of Technology and Science (BITS)-Pilani University, Pilani (2013)

    Google Scholar 

  45. Luste, S., Luostarinen, S., Sillanpaa, M.: Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J. Hazar. Mater. 164, 247–255 (2009)

    Google Scholar 

  46. Zheng, Y., Pan, Z., Zhang, R.: Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2, 51–68 (2009)

    Google Scholar 

  47. Junoh, H., Palanisamy, K., Yip, C., Pua, F.: Optimization of NaOH thermo-chemical pretreatment to enhance solubilisation of organic food waste by response surface methodology. Int. J. Chem. Mol. Eng. 9, 1360–1366 (2015)

    Google Scholar 

  48. Chen, S.S., Iris, K., Tsang, D.C., Yip, A.C., Khan, E., Wang, L., Ok, Y.S., Poon, C.S.: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Bronsted acids: temperature and solvent effects. Chem. Eng. J. 327, 328–335 (2017)

    Google Scholar 

  49. Rani, R.U., Banu, J.R., Tsang, D.C., Lay, C.H.: Thermochemical conversion of food waste for bioenergy generation. In: Food waste to valuable resources, pp. 97–118. Elsevier, Amsterdam (2020)

    Google Scholar 

  50. Radmard, S., Alizadeh, H.H.A., Seifi, R.: Effect of thermal and thermo-chemical pretreatments on food waste in anaerobic digestion and methane production in batch leach bed reactor with down flow at thermophilic temperature. J. Health. 9, 7–17 (2018)

    Google Scholar 

  51. Iris, K., Tsang, D.C., Chen, S.S., Wang, L., Hunt, A.J., Sherwood, J., Vigier, K.D.O., Jerome, F., Ok, Y.S., Poon, C.S.: Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresour. Technol. 245, 456–462 (2017)

    Google Scholar 

  52. Iris, K., Tsang, D.C., Yip, A.C., Chen, S.S., Ok, Y.S., Poon, C.S.: Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere 184, 1099–1107 (2017)

    Google Scholar 

  53. Shoar, F.H., Abdi, R., Najafi, B., Ardabili, S.F.: The effect of thermochemical pre-treatment on biogas production efficiency from kitchen waste using a novel lab scale digester. Renew. Energy Focus. 28, 140–152 (2019)

    Google Scholar 

  54. Iris, K., Ong, K.L., Tsang, D.C., Haque, M.A., Kwan, T.H., Chen, S.S., Uisan, K., Kulkarni, S., Lin, C.S.K.: Chemical transformation of food and beverage waste-derived fructose to hydroxymethylfurfural as a value-added product. Catal. Today 314, 70–77 (2018)

    Google Scholar 

  55. Cao, L., Iris, K., Chen, S.S., Tsang, D.C., Wang, L., **ong, X., Zhang, S., Ok, Y.S., Kwon, E.E., Song, H.: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour. Technol. 252, 76–82 (2018)

    Google Scholar 

  56. Usman, T.M., Kavitha, S., Banu, J.R., Kaliappan, S.: Valorization of food waste for biogas, biohydrogen, and biohythane generation. In: Food waste to valuable resources, pp. 15–38. Elsevier, Amsterdam (2020)

    Google Scholar 

  57. Wingren, A., Galbe, M., Zacchi, G.: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19, 1109–1117 (2003)

    Google Scholar 

  58. Girotto, F., Lavagnolo, M.C., Pivato, A., Cossu, R.: Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery–effects of process conditions during batch tests. Waste. Manag. 70, 71–80 (2017)

    Google Scholar 

  59. Vavouraki, A.I., Volioti, V., Kornaros, M.E.: Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste. Manag. 34, 167–173 (2014)

    Google Scholar 

  60. Zhou, M., Yan, B., Wong, J.W., Zhang, Y.: Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248, 68–78 (2018)

    Google Scholar 

  61. Xu, Q., Du, M., Liu, X., Wang, D., Wu, Y., Li, Y., Yang, J., Fu, Q., He, D., Feng, C.: Calcium peroxide eliminates grease inhibition and promotes short-chain fatty acids production during anaerobic fermentation of food waste. Bioresour. Technol. 316, 123947 (2020)

    Google Scholar 

  62. Bukhari, N.A., Jahim, J.M., Loh, S.K., Nasrin, A.B., Harun, S., Abdul, P.M.: Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste. Biomass. Valoriz. 11, 5549–5559 (2020)

    Google Scholar 

  63. Linyi, C., Yujie, Q., Buqing, C., Chenglong, W., Shaohong, Z., Renglu, C., Shaohua, Y., Lan, Y., Zhiju, L.: Enhancing degradation and biogas production during anaerobic digestion of food waste using alkali pretreatment. Environ. Res. 188, 109743 (2020)

    Google Scholar 

  64. Zhang, A.Y.Z., Sun, Z., Leung, C.C.J., Han, W., Lau, K.Y., Li, M., Lin, C.S.K.: Valorisation of bakery waste for succinic acid production. Green. Chem. 15, 690–695 (2013)

    Google Scholar 

  65. Zhao, J., **g, Y., Zhang, J., Sun, Y., Wang, Y., Wang, H., Bi, X.: Aged refuse enhances anaerobic fermentation of food waste to produce short-chain fatty acids. Bioresour. Technol. 289, 121547 (2019)

    Google Scholar 

  66. Sravan, J.S., Butti, S.K., Sarkar, O., Krishna, K.V., Mohan, S.V.: Electrofermentation of food waste—regulating acidogenesis towards enhanced volatile fatty acids production. Chem. Eng. J. 334, 1709–1718 (2018)

    Google Scholar 

  67. Deheri, C., Acharya, S.K.: Effect of calcium peroxide and sodium hydroxide on hydrogen and methane generation during the co-digestion of food waste and cow dung. J. Clean. Prod. 279, 123901 (2021)

    Google Scholar 

  68. Leung, C.C.J., Cheung, A.S.Y., Zhang, A.Y.Z., Lam, K.F., Lin, C.S.K.: Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 65, 10–15 (2012)

    Google Scholar 

  69. Khaldi, K., Sam, S., Lounas, A., Yaddaden, C., Gabouze, N.E.: Comparative investigation of two methods for acetylcholinesterase enzyme immobilization on modified porous silicon. Appl. Surf. Sci. 421, 148–154 (2017)

    Google Scholar 

  70. Asgher, M., Shahid, M., Kamal, S., Iqbal, H.M.N.: Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J. Mol. Catal. B Enz. 101, 56–66 (2014)

    Google Scholar 

  71. Mazzuca, S., Giorno, L., Spadafora, A., Mazzei, R., Drioli, E.: A new combined method to localize enzyme immobilized in polymeric membranes and evaluate its activity in situ. Desalination 199, 228–229 (2006)

    Google Scholar 

  72. Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., Amjad, F.: Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal. Lett. 151, 307–323 (2021)

    Google Scholar 

  73. Jang, S.A., Park, J.H., Lim, H.J., Oh, J.Y., Bae, K.H., Lee, K.J., Song, J.K., Kim, D.M.: Bio-specific immobilization of enzymes on electrospun PHB nanofibers. Enz. Microb. Technol. 145, 109749 (2020)

    Google Scholar 

  74. Torres-Leon, C., Chavez-González, M.L., Hernández-Almanza, A., Martínez-Medina, G.A., Ramírez-Guzmán, N., Londono-Hernández, L., Aguilar, C.N.: Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Curr. Opi. Food. Sci. 38, 40–45 (2020)

    Google Scholar 

  75. Bilal, M., Iqbal, H.M.: Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities—a review. Food. Res. Int. 123, 226–240 (2019)

    Google Scholar 

  76. Bernal, C., Rodriguez, K., Martinez, R.: Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36, 1470–1480 (2018)

    Google Scholar 

  77. Han, W., **n, Y., Hasegawa, U., Uyama, H.: Enzyme immobilization on polymethacrylate-based monolith fabricated via thermally induced phase separation. Polym. Degrad. Stab. 109, 362–366 (2014)

    Google Scholar 

  78. Souza, R., Faria, E., Figueiredo, R., Mettedi, S., Santos, O., Lima, A., Soares, C.: Protic ionic liquid applied to enhance the immobilization of lipase in sol–gel matrices. J. Therm. Anal. Calorim. 128, 833–840 (2017)

    Google Scholar 

  79. Souza, R.L., Faria, E.L., Figueiredo, R.T., Fricks, A.T., Zanin, G.M., Santos, O.A., Lima, Á.S., Soares, C.M.: Use of polyethylene glycol in the process of sol–gel encapsulation of Burkholderia cepacia lipase. J. Therm. Anal. Calorim. 117, 301–306 (2014)

    Google Scholar 

  80. Martins, S.R., Andrade, S.M., Fricks, A.T., Lima, A.S., Silva, D.P., Figueiredo, R.T., Freitas, L.S., Cabrera-Padilla, R.Y., Soares, C.M., Souza, R.L.: Ionic liquid synergistic effect between preparation of hybrid supports and immobilization of lipase applied to esters production. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10408-4

    Article  Google Scholar 

  81. Gascon, V., Castro-Miguel, E., Díaz-García, M., Blanco, R.M., Sanchez-Sanchez, M.: In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. J. Chem. Technol. Biotechnol. 92, 2583–2593 (2017)

    Google Scholar 

  82. Llerena Suster, C.R., Toledo, M.V., Fittipaldi, A.S., Morcelle, S.R., Briand, L.E.: Lipase B of Candida antarctica co-adsorbed with polyols onto TiO2 nanoparticles for improved biocatalytic performance. J. Chem. Technol. Biotechnol. 92, 2870–2880 (2017)

    Google Scholar 

  83. Nadeem, F., Mehmood, T., Anwar, Z., Saeed, S., Bilal, M., Meer, B.: Optimization of bioprocess steps through response surface methodology for the production of immobilized lipase using Chaetomium globosum via solid-state fermentation. Biomass Conver. Bioref. (2021). https://doi.org/10.1007/s13399-021-01752-y

    Article  Google Scholar 

  84. Sato, R., Kawakami, T., Tokuyama, H.: Preparation of polymeric macroporous hydrogels for the immobilization of enzymes using an emulsion-gelation method. React. Funct. Polym. 76, 8–12 (2014)

    Google Scholar 

  85. Liu, D.M., Chen, J., Shi, Y.P.: Advances on methods and easy separated support materials for enzymes immobilization. TrAC. Trends. Anal. Chem. 102, 332–342 (2018)

    Google Scholar 

  86. Ashkan, Z., Hemmati, R., Homaei, A., Dinari, A., Jamlidoost, M., Tashakor, A.: Immobilization of enzymes on nanoinorganic support materials: an update. Int. J. Biol. Macromol. 168, 708–721 (2020)

    Google Scholar 

  87. Akkas, T., Zakharyuta, A., Taralp, A., Ow-Yang, C.W.: Cross-linked enzyme lyophilisates (CLELs) of urease: a new method to immobilize ureases. Enz. Microb. Technol. 132, 109390 (2020)

    Google Scholar 

  88. Verma, N.K., Raghav, N.: Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives. Int. J. Biol. Macromol. 174, 134–143 (2021)

    Google Scholar 

  89. Alves, N.R., Pereira, M.M., Giordano, R.L., Tardioli, P.W., Lima, A.S., Soares, C.M., Souza, R.L.: Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess. Biosyst. Eng. 44, 57–66 (2021)

    Google Scholar 

  90. You, C., Chen, H., Myung, S., Sathitsuksanoh, N., Ma, H., Zhang, X.Z., Li, J., Zhang, Y.H.P.: Enzymatic transformation of nonfood biomass to starch. Proc. Natl. Acad. Sci. 110, 7182–7187 (2013)

    Google Scholar 

  91. Kannah, R.Y., Merrylin, J., Devi, T.P., Kavitha, S., Sivashanmugham, P., Kumar, G., Banu, J.R.: Food waste valorization: biofuels and value added product recovery. Bioresour. Technol. Rep. 11, 100524 (2020)

    Google Scholar 

  92. Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I.S., Nair, R.B., Pandey, A.: Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 241, 619–630 (2019)

    Google Scholar 

  93. Lu, S.Y., Chu, Y.L., Sridhar, P.J.K.: Tsai, Effect of ultrasound, high-pressure processing, and enzymatic hydrolysis on carbohydrate hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon) flavedo. LWT 138, 110511 (2020)

    Google Scholar 

  94. Chintagunta, A.D., Ray, S., Banerjee, R.: An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. J. Clean. Prod. 165, 1508–1516 (2017)

    Google Scholar 

  95. Patel, A., Hruzova, K., Rova, U., Christakopoulos, P., Matsakas, L.: Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 294, 122247 (2019)

    Google Scholar 

  96. Sharma, P., Gaur, V.K., Sirohi, R., Varjani, S., Kim, S.H., Wong, J.W.: Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 325, 124684 (2021)

    Google Scholar 

  97. Zhang, C., Kang, X., Wang, F., Tian, Y., Liu, T., Su, Y., Qian, T., Zhang, Y.: Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy 208, 118379 (2020)

    Google Scholar 

  98. Nadeem, F., Mehmood, T., Naveed, M., Shamas, S., Saman, T., Anwar, Z.: Protease production from Cheotomium globusum through central composite design using agricultural wastes and its immobilization for industrial exploitation. Waste. Biomass. Valoriz. 11, 6529–6539 (2020)

    Google Scholar 

  99. Ma, H.Z., **ng, Y., Yu, M., Wang, Q.: Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl. Energy 129, 89–93 (2014)

    Google Scholar 

  100. Kyriakou, M., Patsalou, M., **aris, N., Tsevis, A., Koutsokeras, L., Constantinides, G., Koutinas, M.: Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: application in a citrus peel waste biorefinery. Renew. Energy 155, 53–64 (2020)

    Google Scholar 

  101. Binhayeeding, N., Klomklao, S., Prasertsan, P., Sangkharak, K.: Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renew. Energy. 162, 1819–1827 (2020)

    Google Scholar 

  102. Li, N.W., Zong, M.H., Wu, H.: Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process. Biochem. 44, 685–688 (2009)

    Google Scholar 

  103. Xue, L., Long, J., Lu, C., Li, X., Xu, X., **, Z.: Immobilization of polygalacturonase for the preparation of pectic oligosaccharides from mango peel wastes and assessment of their antibacterial activities. Food. Biosci. 39, 100837 (2021)

    Google Scholar 

  104. Joshi, R., Sharma, R., Kuila, A.: Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation. Bioresour. Technol. Rep. 5, 134–140 (2019)

    Google Scholar 

  105. Yu, X., Zhang, Z., Li, J., Su, Y., Gao, M., **, T., Chen, G.: Co-immobilization of multi-enzyme on reversibly soluble polymers in cascade catalysis for the one-pot conversion of gluconic acid from corn straw. Bioresour. Technol. 321, 124509 (2020)

    Google Scholar 

  106. Gou, Z., Ma, N.L., Zhang, W., Lei, Z., Su, Y., Sun, C., Wang, G., Chen, H., Zhang, S., Chen, G.: Innovative hydrolysis of corn stover biowaste by modified magnetite laccase immobilized nanoparticles. Environ. Res. 188, 109829 (2020)

    Google Scholar 

  107. Bussamra, B.C., Freitas, S., da Costa, A.C.: Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour. Technol. 187, 173–181 (2015)

    Google Scholar 

  108. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M.: Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)

    Google Scholar 

  109. Li, S., Yang, X.: Biofuel production from food wastes. In: Handbook of biofuels production, pp. 617–653. Elsevier, Amsterdam (2016)

    Google Scholar 

  110. Alfio, V.G., Manzo, C., Micillo, R.: From fish waste to value: an overview of the sustainable recovery of omega-3 for food supplements. Molecules 26, 1002 (2021)

    Google Scholar 

  111. Teigiserova, D.A., Tiruta-Barna, L., Ahmadi, A., Hamelin, L., Thomsen, M.: A step closer to circular bioeconomy for citrus peel waste: a review of yields and technologies for sustainable management of essential oils. J. Environ. Manag. 280, 111832 (2021)

    Google Scholar 

  112. Vilarino, M.V., Franco, C., Quarrington, C.: Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5, 21 (2017)

    Google Scholar 

  113. Ghamrawy, M.: Food lost and waste and value chains. Food and Agricultural organization, United Nations, New York (2019)

    Google Scholar 

  114. Anstalt, S.V.: Food and agriculture organization, United Nations (2013)

  115. Luque, R., Clark, J.H.: Valorisation of food residues: waste to wealth using green chemical technologies. Sustain. Chem. Process. 1, 1–3 (2013)

    Google Scholar 

  116. Ferreira, V.F., Silva, F.D.C.D., Ferreira, P.G.: Carboidratos como fonte de compostos para a indústria de química fina. Quím. Nova. 36, 1514–1519 (2013)

    Google Scholar 

  117. Lam, C.M., Iris, K., Hsu, S.C., Tsang, D.C.: Life-cycle assessment on food waste valorisation to value-added products. J. Clean. Prod. 199, 840–848 (2018)

    Google Scholar 

  118. Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour. Technol. 247, 1069–1076 (2018)

    Google Scholar 

  119. Mehariya, S., Patel, A.K., Obulisamy, P.K., Punniyakotti, E., Wong, J.W.: Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Bioresour. Technol. 265, 519–531 (2018)

    Google Scholar 

  120. Tao, Z., Wang, D., Yao, F., Huang, X., Wu, Y., Du, M., Chen, Z., An, H., Li, X., Yang, Q.: The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method. J. Hazard. Mater. 384, 121363 (2020)

    Google Scholar 

  121. Tsapekos, P., Kougias, P., Vasileiou, S., Lyberatos, G., Angelidaki, I.: Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate. Bioresour. Technol. 225, 246–253 (2017)

    Google Scholar 

  122. Mahdy, A., Song, Y., Salama, A., Qiao, W., Dong, R.: Simultaneous H2S mitigation and methanization enhancement of chicken manure through the introduction of the micro-aeration approach. Chemosphere 253, 126687 (2020)

    Google Scholar 

  123. Dahiya, S., Kumar, A.N., Sravan, J.S., Chatterjee, S., Sarkar, O., Mohan, S.V.: Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour. Technol. 248, 2–12 (2018)

    Google Scholar 

  124. Tobiszewski, M.: Analytical chemistry with biosolvents. Anal. Bioanal. Chem. 411, 4359–4364 (2019)

    Google Scholar 

  125. Ayodele, B.V., Alsaffar, M.A., Mustapa, S.I.: An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. J. Clean. Prod. 245, 118857 (2020)

    Google Scholar 

  126. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M.: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Lab. (NREL), Golden (2011)

    Google Scholar 

  127. Lalman, J.A., Shewa, W.A., Gallagher, J., Ravella, S.: Biofuels production from renewable feedstocks, quality living through chemurgy and green chemistry, pp. 193–220. Springer, Cham (2016)

    Google Scholar 

  128. Jogi, K., Bhat, R.: Valorization of food processing wastes and by-products for bioplastic production. Sustain. Chem. Pharm. 18, 100326 (2020)

    Google Scholar 

  129. Reddy, M.V., Mohan, S.V.: Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour. Technol. 103, 313–321 (2012)

    Google Scholar 

  130. Nielsen, C., Rahman, A., Rehman, A.U., Walsh, M.K., Miller, C.D.: Food waste conversion to microbial polyhydroxyalkanoates. Microb. Biotechnol. 10, 1338–1352 (2017)

    Google Scholar 

  131. Pérez, V., Mota, C.R., Munoz, R., Lebrero, R.: Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: assessing the potential impacts on economy, environment and society. Chemosphere 255, 126929 (2020)

    Google Scholar 

  132. Astolfi, M.L., Marconi, E., Lorini, L., Valentino, F., Silva, F., Ferreira, B.S., Canepari, S., Majone, M.: Elemental concentration and migratability in bioplastics derived from organic waste. Chemosphere 259, 127472 (2020)

    Google Scholar 

  133. Iris, K., Tsang, D.C., Yip, A.C., Chen, S.S., Ok, Y.S., Poon, C.S.: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresour. Technol. 219, 338–347 (2016)

    Google Scholar 

  134. Pleissner, D., Demichelis, F., Mariano, S., Fiore, S., Gutiérrez, I.M.N., Schneider, R., Venus, J.: Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean. Prod. 143, 615–623 (2017)

    Google Scholar 

  135. Nawaz, A., Mechal, Q., Francis, N., Tahir, A., Mukhtar, H., Haq, I.: Lactic acid production using food waste. Int. J. Eng. Res. Technol. 6, 1044–1050 (2016)

    Google Scholar 

  136. de Souza Mesquita, L.M., Martins, M., Pisani, L.P., Ventura, S.P., de Rosso, V.V.: Insights on the use of alternative solvents and technologies to recover bio-based food pigments. Compr. Rev. Food. Sci. Food. Saf. 20, 787–818 (2021)

    Google Scholar 

  137. Georganas, A., Giamouri, E., Pappas, A.C., Papadomichelakis, G., Galliou, F., Manios, T., Tsiplakou, E., Fegeros, K., Zervas, G.: Bioactive compounds in food waste: a review on the transformation of food waste to animal feed. Foods 9, 291 (2020)

    Google Scholar 

  138. del Mar Contreras, M., Lama-Munoz, A., Gutierrez-Perez, J.M., Espínola, F., Moya, M., Castro, E.: Protein extraction from agri-food residues for integration in biorefinery: potential techniques and current status. Bioresour. Technol. 280, 459–477 (2019)

    Google Scholar 

  139. Kwan, T.H., Ong, K.L., Haque, M.A., Kwan, W.H., Kulkarni, S., Lin, C.S.K.: Valorisation of food and beverage waste via saccharification for sugars recovery. Bioresour. Technol. 255, 67–75 (2018)

    Google Scholar 

  140. Li, S.Y., Ng, I.S., Chen, P.T., Chiang, C.J., Chao, Y.P.: Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnol. Biofuels 11, 1–15 (2018)

    Google Scholar 

  141. Caldeira, C., Vlysidis, A., Fiore, G., De Laurentiis, V., Vignali, G., Sala, S.: Sustainability of food waste biorefinery: a review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 312, 123575 (2020)

    Google Scholar 

  142. Ahuja, I., Dauksas, E., Remme, J.F., Richardsen, R., Loes, A.K.: Fish and fish waste-based fertilizers in organic farming–with status in Norway: a review. Waste. Manag. 115, 95–112 (2020)

    Google Scholar 

  143. Wang, X., Zhang, Y., Li, Y., Luo, Y.L., Pan, Y.R., Liu, J., Butler, D.: Alkaline environments benefit microbial K-strategists to efficiently utilize protein substrate and promote valorization of protein waste into short-chain fatty acids. Chem. Eng. J. 404, 127147 (2021)

    Google Scholar 

  144. Araujo, J., Sica, P., Costa, C., Marquez, M.: Enzymatic hydrolysis of fish waste as an alternative to produce high value-added products. Waste. Biomass. Valoriz. 12, 847–855 (2021)

    Google Scholar 

  145. Bechaux, J., Gatellier, P., Le Page, J.F., Drillet, Y., Sante-Lhoutellier, V.: A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food. Fun. 10, 6244–6266 (2019)

    Google Scholar 

  146. Noorzai, S., Verbeek, C.J.R., Lay, M.C., Swan, J.: Collagen extraction from various waste bovine hide sources. Waste. Biomass. Valoriz. 11, 5687–5698 (2020)

    Google Scholar 

  147. Cecilia, J.A., García-Sancho, C., Maireles-Torres, P.J., Luque, R.: Industrial food waste valorization: a general overview. In: Biorefinery, pp. 253–277. Springer, Cham (2019)

    Google Scholar 

  148. Meng, Y., Luan, F., Yuan, H., Chen, X., Li, X.: Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. Bioresour. Technol. 224, 48–55 (2017)

    Google Scholar 

  149. Venturi, F., Sanmartin, C., Taglieri, I., Nari, A., Andrich, G., Terzuoli, E., Donnini, S., Nicolella, C., Zinnai, A.: Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients 9, 916 (2017)

    Google Scholar 

  150. Nathia-Neves, G., Alonso, E.: Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food. Bioprod. Process. 125, 57–67 (2021)

    Google Scholar 

  151. Algapani, D.E., Wang, J., Qiao, W., Su, M., Goglio, A., Wandera, S.M., Jiang, M., Pan, X., Adani, F., Dong, R.: Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Bioresour. Technol. 244, 996–1005 (2017)

    Google Scholar 

  152. Rodrigues, A., Bordado, J.C., Santos, R.G.D.: Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals—a technological review for three chemical pathways. Energies 10, 1817 (2017)

    Google Scholar 

  153. Toldra-Reig, F., Mora, L., Toldra, F.: Trends in biodiesel production from animal fat waste. Appl. Sci. 10, 3644 (2020)

    Google Scholar 

  154. Karmee, S.K., Linardi, D., Lee, J., Lin, C.S.K.: Conversion of lipid from food waste to biodiesel. Waste. Manag. 41, 169–173 (2015)

    Google Scholar 

  155. Pradima, J., Kulkarni, M.R.: Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. Resour. Eff. Technol. 3, 394–405 (2017)

    Google Scholar 

  156. Costa, M.J., Silva, M.R., Ferreira, E.E., Carvalho, A.K.F., Basso, R.C., Pereira, E.B., de Castro, H.F., Mendes, A.A., Hirata, D.B.: Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chem. Eng. Process. Process Int. 157, 108131 (2020)

    Google Scholar 

  157. Dosoky, N.S., Setzer, W.N.: Biological activities and safety of Citrus spp. essential oils. Int. J. Mol. Sci. 19, 1966 (2018)

    Google Scholar 

  158. John, I., Muthukumar, K., Arunagiri, A.: A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. Int. J. Green. Energy 14, 599–612 (2017)

    Google Scholar 

  159. Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E., Cho, M.H.: Citrus essential oils: extraction, authentication and application in food preservation. Crit. Rev. Food. Sci. Nutr. 59, 611–625 (2019)

    Google Scholar 

  160. Fiori, L., Volpe, M., Lucian, M., Anesi, A., Manfrini, M., Guella, G.: From fish waste to omega-3 concentrates in a biorefinery concept. Waste. Biomass. Valoriz. 8, 2609–2620 (2017)

    Google Scholar 

  161. Coppola, D., Lauritano, C., Esposito, F.P., Riccio, G., Rizzo, C., de Pascale, D.: Fish waste: from problem to valuable resource. Mar. Drugs. 19, 116 (2021)

    Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (MX) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Tahir Mehmood.

Ethics declarations

Conflict of interest

The author(s) declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Mehmood, T., Nadeem, F. et al. Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. Waste Biomass Valor 13, 1807–1824 (2022). https://doi.org/10.1007/s12649-021-01618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01618-4

Keywords

Navigation