Log in

Analysis of Advanced TiO2/Si based Solar Cell Architecture: Improving PV Parameters and Thermal Stability

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this contribution, Automat FOR Simulation of HETero-structures v2.5 software was used for unveiling the photovoltaic performance and thermal stability of relatively less explored TiO2/c-Si heterojunction solar cell architecture based on 110 μm wafers. Firstly, the dependence of the photovoltaic performance on the emitter layer, i.e. the TiO2 layer, was explored by varying its different characteristics: thickness, carrier concentration and the defect density at the TiO2/Si interface. The study revealed that the power conversion efficiency might be as high as 16.34% (even without any interfacial passivation layer) even when the thickness of the wafer was kept at 110 μm; the thickness and the do** concentration of the TiO2 emitter layer were kept as 7 nm and 1 × 1020 cm−3; respectively. The corresponding defect density at the TiO2/p-Si interface was 1 × 1012 cm−2. Furthermore, a significant gain in the power output was realized by embedding either poly-silicon on oxide or carrier selective contact layer at the rear side of the device architecture. In the case of the incorporation of poly-silicon on the oxide structure at the rear side of the metal/c-Si interface, the role of the ultra-thin tunnel oxide thickness on the device's performance was explored in detail. Next, the poly-silicon on oxide structure was replaced by the NiOx layer, an efficient hole transport layer at the rear side of the device architecture. Various performance-affecting parameters, such as NiOx thickness, NiOx band gap, and the defect density at the NiOx/Si interface, were varied at different carrier concentrations of the NiOx layer to obtain the best possible conditions for realizing the maximum power output. The study was further extended to examine the influence of the wafer lifetime on the device performance of all the simulated solar cells. Eventually, the device temperature was varied from 275 to 375 K with an interval of 25 K to investigate the thermal stability of the proposed cell architectures so that the best possible architecture could be selected for practical fabrication both in terms of photovoltaic performance and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. IEA: More than a third of the world’s electricity will come from renewables in 2025. March, 16, 2023, World Economic Forum. https://www.weforum.org/agenda/2023/03/electricity-generation-renewables-power-iea/

  2. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electric power. J Appl Phys 25:676–677. https://doi.org/10.1063/1.1721711

    Article  CAS  Google Scholar 

  3. Srivastava V, Chauhan RK, Lohia P (2023) Investigating the performance of lead-free perovskite solar cells using various hole transport material by numerical simulation. Trans Electr Electron Mater 24:20–30. https://doi.org/10.1007/s42341-022-00412-w

    Article  Google Scholar 

  4. Srivastava V, Chauhan RK, Lohia P (2023) Theoretical study of a lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerg Mater Res 12(1):37–46. https://doi.org/10.1680/jemmr.22.00059

  5. Srivastava V, Chauhan RK, Lohia P (2022) Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: Theoretical study. J Opt 52:1218–1225

    Article  Google Scholar 

  6. Srivastava V, Chauhan RK, Lohia P, Yadav S (2023) Achieving above 25 % efficiency from FA0.85Cs0.15Pb(I0.85Br 0.15)3 perovskite solar cell through harnessing the potential of absorber and charge transport layers. Micro Nanostruct 184:207691. https://doi.org/10.1016/j.micrna.2023.207691

    Article  CAS  Google Scholar 

  7. Mishra K, Chauhan RK, Mishra R (2023) Performance optimization of lead-free inorganic perovskite solar cell using SCAPS-1D. J Opt. https://doi.org/10.1007/s12596-023-01466-6

    Article  Google Scholar 

  8. Chaudhary AK, Verma S, Chauhan RK (2023) Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH3NH3GeI3 as ETL. Eng Res Express IOP 5(3):035039. https://doi.org/10.1088/2631-8695/acee45

  9. Srivastava V, Chauhan RK, Lohia P (2024) Investigation of Eco-friendly Perovskite Solar Cell Employing Niobium Pentoxide as Electron Transport Material using SCAPS-1D. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-024-00509-4

    Article  Google Scholar 

  10. Liu J, Yao Y, **ao S, Gu X (2018) Review of status developments of high-efficiency crystalline silicon solar cells. J Phys D Appl Phys 51(12):123001. https://doi.org/10.1088/1361-6463/aaac6d

  11. Chistiakova G, Macco B, Korte L (2020) Low-temperature atomic layer deposited magnesium oxide as a passivating electron contact for c-si-based solar cells. IEEE J Photovolt 10(2):398–406. https://doi.org/10.1109/JPHOTOV.2019.2961603

    Article  Google Scholar 

  12. Roy A, Benhaliliba M (2023) Investigation of ZnO/p-Si heterojunction solar cell: Showcasing experimental and simulation study. Optik 274:170557. https://doi.org/10.1016/j.ijleo.2023.170557

    Article  CAS  Google Scholar 

  13. Chen L, Chen XL, Liu YM, Zhao Y, Zhang XD (2017) Research on ZnO/Si heterojunction solar cells. J Semicond 38(5):054005. https://doi.org/10.1088/1674-4926/38/5/054005

    Article  CAS  Google Scholar 

  14. Naim H, Shah DK, Bouadi A (2022) An In-Depth Optimization of Thickness of Base and Emitter of ZnO/Si Heterojunction-Based Crystalline Silicon Solar Cell: A Simulation Method. J Electron Mater 51:586–593. https://doi.org/10.1007/s11664-021-09341-5

    Article  CAS  Google Scholar 

  15. Hussain B, Aslam A, Khan TM, Creighton M, Zohuri B (2019) Electron Affinity and Bandgap Optimization of Zinc Oxide for Improved Performance of ZnO/Si Heterojunction Solar Cell Using PC1D Simulations. Electronics 8:238. https://doi.org/10.3390/electronics8020238

    Article  CAS  Google Scholar 

  16. Nayak M, Mandal S, Pandey A, Mudgal S, Singh S, Komarala VK (2019) Nickel Oxide Hole-Selective Heterocontact for Silicon Solar Cells: Role of SiOx Interlayer on Device Performance. Solar RRL 3(11):1900261. https://doi.org/10.1002/solr.201900261

    Article  CAS  Google Scholar 

  17. Islam MB, Yanagida M, Shirai Y, Nabetani Y, Miyano K (2017) NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega 2(5):2291–2299. https://doi.org/10.1021/acsomega.7b00538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Battaglia C, de Nicolás SM, De Wolf S, Yin X, Zheng M, Ballif C, Javey A (2014) Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett 104:113902. https://doi.org/10.1063/1.4868880

    Article  CAS  Google Scholar 

  19. Zhang T, Lee C-Y, Wan Y, Lim S, Hoex B (2018) Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. J Appl Phys 124:073106. https://doi.org/10.1063/1.5041774

    Article  CAS  Google Scholar 

  20. Macco B, Black LE, Melskens J, van de Loo BWH, Berghuis W-JH, Verheijen MA, Kessels WMM (2018) Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells. Solar Energy Mater Solar Cells 184:98–104. https://doi.org/10.1016/j.solmat.2018.04.037

    Article  CAS  Google Scholar 

  21. Ling X, Yuan J, Liu D, Wang Y, Zhang Y, Chen S, Wu H, ** F, Wu F, Shi G, Tang X, Zheng J, Liu SF, Liu Z, Ma W (2017) Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces 9(27):23181–23188. https://doi.org/10.1021/acsami.7b05113

    Article  CAS  PubMed  Google Scholar 

  22. Yin X, Battaglia C, Lin Y, Chen K, Hettick M, Zheng M, Chen C-Y, Kiriya D, Javey A (2014) 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact. ACS Photonics 1(12):1245–1250. https://doi.org/10.1021/ph500153c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Bi Q, Ali H, Davis K, Schoenfeld WV, Weber K (2016) High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv Mater 28(28):5891–5897. https://doi.org/10.1002/adma.201600926

    Article  CAS  PubMed  Google Scholar 

  24. Lee C, Bae S, Park HJ, Choi D, Song H, Lee H, Ohshita Y, Kim D, Kang Y, Lee H-S (2020) Properties of thermally evaporated titanium dioxide as an electron-selective contact for silicon solar cells. Energies 13(3):678. https://doi.org/10.3390/en13030678

    Article  CAS  Google Scholar 

  25. Hsu W, Sutter-Fella C, Hettick M (2015) Electron-selective TiO2 contact for Cu(In, Ga)Se2 solar cells. Sci Rep 5:16028. https://doi.org/10.1038/srep16028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Acharyya S, Sadhukhan S, Panda T, Ghosh DK, Mandal NC, Nandi A, Bose S, Das G, Maity S, Chaudhuri P, Saha H, Banerjee D (2022) Dopant-free materials for carrier-selective passivating contact solar cells: A review. Surf Interfaces 28:101687. https://doi.org/10.1016/j.surfin.2021.101687

    Article  CAS  Google Scholar 

  27. Watanabe A, Qin G (2014) Heterojunctions of TiO2 nanoparticle film and c-Si with different Fermi level positions. Appl Phys A 116:1281–1285. https://doi.org/10.1007/s00339-014-8221-x

    Article  CAS  Google Scholar 

  28. Samantaray MR, Gautam PK, Ghosh DS, Chander N (2021) Spray deposited TiO2 thin films for large-area TiO2/p-Si heterojunction solar cells. Eng Res Express 3(4):045053. https://doi.org/10.1088/2631-8695/ac41b6

    Article  Google Scholar 

  29. Avasthi S, McClain WE, Man G, Kahn A, Schwartz J, Sturm JC (2013) Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl Phys Lett 102:203901. https://doi.org/10.1063/1.4803446

    Article  CAS  Google Scholar 

  30. Yadav C, Kumar S (2022) Numerical simulation for optimization of ultra-thin n-type AZO and TiO2 based textured p-type c-Si heterojunction solar cells. Silicon 14:4291–4299. https://doi.org/10.1007/s12633-021-01212-2

    Article  CAS  Google Scholar 

  31. International technology roadmap for photovoltaic (ITRPV), Fourteenth Edition, April 2023, VDMA, Germany

  32. Ghosh DK, Bose S, Das G, Acharyya S, Nandi A, Mukhopadhyay S, Sengupta A (2022) Fundamentals, present status and future perspective of TOPCon solar cells: A comprehensive review. Surf Interfaces 30:101917. https://doi.org/10.1016/j.surfin.2022.101917

    Article  CAS  Google Scholar 

  33. Varache R, Leendertz C, Gueunier-Farret ME, Haschke J, Muñoz D, Korte L (2015) Investigation of Selective Junctions Using a Newly Developed Tunnel Current Model for Solar Cell Applications. Sol Energy Mater Sol Cells 141:14–23. https://doi.org/10.1016/j.solmat.2015.05.014

    Article  CAS  Google Scholar 

  34. Gorle DK, Chander N (2020) A simulation approach for device structure and thickness optimization of silicon heterojunction solar cells featuring TiO2 as carrier-selective contact. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.312

    Article  Google Scholar 

  35. Ghosh DK, Acharyya S, Bose S, Das G, Mukhopadhyay S, Sengupta A (2023) A detailed theoretical analysis of TOPCon/TOPCore solar cells based on p-type wafers and prognosticating the device performance on thinner wafers and different working temperatures. Silicon 15:7593–7607. https://doi.org/10.1007/s12633-023-02606-0

  36. Woods-Robinson R, Fioretti AN, Haschke J, Boccard M, Persson KA, Ballif C (2021) Evaluating materials design parameters of hole-selective contacts for silicon heterojunction solar cells. IEEE J Photovolt 11(2):247–258. https://doi.org/10.1109/JPHOTOV.2020.3038330

    Article  Google Scholar 

  37. Zhang W, Shen H, Yin M, Lu L, Xu B, Li D (2022) Heterostructure silicon solar cells with enhanced power conversion efficiency based on SiOx/Ni3+ self-doped NiOx passivating contact (Supporting Information). ACS Omega 7(19):16494–16501. https://doi.org/10.1021/acsomega.2c00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Polyanskiy MN (2024) Refractiveindex.info database of optical constants. Sci Data 11(94). https://doi.org/10.1038/s41597-023-02898-2

  39. Glunz SW, Feldmann F (2018) SiO2 surface passivation layers – a key technology for silicon solar cells. Sol Energy Mater Sol Cells 185:260–269. https://doi.org/10.1016/j.solmat.2018.04.029

    Article  CAS  Google Scholar 

  40. Ge J, Ling ZP, Wong J, Mueller T, Aberle AG (2012) Optimisation of intrinsic a-Si: H passivation layers in crystalline-amorphous silicon heterojunction solar cells. Energy Procedia 15:107–117. https://doi.org/10.1016/j.egypro.2012.02.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work has been carried out in DST-IIEST Solar PV Hub and supported by Department of Science and Technology (DST/TMD/SERI/HUB/2(G), Govt. of India (GoI). One of the authors, Dibyendu Kumar Ghosh is grateful to Ministry of New and Renewable Energy (MNRE), India for providing him the fellowship for conducting the research work.

Funding

The present work has been carried out in DST-IIEST Solar PV Hub and supported by Department of Science and Technology (DST/TMD/SERI/HUB/2(G), Govt. of India (GoI).

Author information

Authors and Affiliations

Authors

Contributions

Dibyendu Kumar Ghosh (Simulation and Analysis,Preparing Manuscript), Shiladitya Acharyya (Analysis), Sukanta Bose (Preparing Manuscript), Gourab Das (Conceptualizing and Proof), Sumita Mukhopadhyay (Supervising), Anindita Sengupta (Supervising). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gourab Das.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent for Publication

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D.K., Acharyya, S., Bose, S. et al. Analysis of Advanced TiO2/Si based Solar Cell Architecture: Improving PV Parameters and Thermal Stability. Silicon (2024). https://doi.org/10.1007/s12633-024-03063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-03063-z

Keywords

Navigation