Log in

Investigation of Eco-friendly Perovskite Solar Cell Employing Niobium Pentoxide as Electron Transport Material using SCAPS-1D

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Perovskite is the most appropriate material for designing of thin film solar cells. In this work, inorganic perovskite solar cell which is lead free, stable and eco-friendly has been proposed with configuration FTO/Nb2O5/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au. For high carrier mobility, Nb2O5 is used as ETL layer in place of PCBM which also diminishes the cost of device. Proposed solar cell is investigated against limiting factors such as working point temperature, defect density, donor carrier concentration and thickness of perovskite absorber layer. The optimized performance of the proposed structure using Nb2O5 as ETL layer are as follows: PCE = 28.25%, Voc = 1.2789 V, Jsc = 26.3470 mA/cm2 and FF = 83.85%. SCAPS-1D is employed for the simulation of proposed perovskite solar device. The proposed perovskite solar cell has the potential to revoke instability and toxicity issues which are the major concerns of present day’s solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, G. Tessema Mola, Perovskites photovoltaic solar cells: An overview of current status. Renew. Sustain. Energy Rev. 91, 1025–1044 (2018). https://doi.org/10.1016/j.rser.2018.04.069

    Article  CAS  Google Scholar 

  2. M. Deo, R.K. Chauhan, Tweaking the performance of thin film CIGS solar cell using InP as buffer layer. Optik (Stuttgart) 273, 170357 (2023). https://doi.org/10.1016/j.ijleo.2022.170357

    Article  CAS  Google Scholar 

  3. S. Kumar, R.K. Chauhan, Performance up-gradation of CIGS solar cell using Ag2S quantum dot as buffer layer. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00992-0

    Article  Google Scholar 

  4. N. Suresh Kumar, K. Chandra Babu Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 940, 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  5. P. Srivastava, Sadanand, S. Rai, P. Lohia, D.K. Dwivedi, H. Qasem, A. Umar, S. Akbar, H. Algadi, S. Baskoutas, Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D. Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac9dc5

    Article  Google Scholar 

  6. V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free perovskite solar cells using various hole transport material by numerical simulation. Trans. Electr. Electron. Mater. (2022). https://doi.org/10.1007/s42341-022-00412-w

    Article  Google Scholar 

  7. J. Madan, Shivani, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 197, 212–221 (2020). https://doi.org/10.1016/j.solener.2020.01.006

    Article  CAS  Google Scholar 

  8. A. Gupta, V. Srivastava, S. Yadav, P. Lohia, D.K. Dwivedi, A. Umar, M.H. Mahmoud, Performance enhancement of perovskite solar cell using SrTiO3 as electron transport layer. J. Nanoelectron. Optoelectron. 18, 452–458 (2023). https://doi.org/10.1166/jno.2023.3407

    Article  CAS  Google Scholar 

  9. D. Kumari, S.K. Pandey, Effect of an ultra-thin 2D transport layer on eco-friendly perovskite/CIGS tandem solar cell: a numerical study. Micro Nanostruct. (2022). https://doi.org/10.1016/j.micrna.2022.207398

    Article  Google Scholar 

  10. H. Dixit, D. Punetha, S.K. Pandey, Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik (Stuttgart) 179, 969–976 (2019). https://doi.org/10.1016/j.ijleo.2018.11.028

    Article  CAS  Google Scholar 

  11. L.M.M. Livingston, R.T. Prabu, R. Radhika, A. Kumar, Simulation of native oxide-passivated CsSn0.5Ge0.5I3 highly stable lead-free inorganic perovskite solar cell. Physica Status Solidi (A) Appl. Mater. Sci. (2023). https://doi.org/10.1002/pssa.202300227

    Article  Google Scholar 

  12. M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, N.P. Padture, Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-018-07951-y

    Article  CAS  Google Scholar 

  13. S. Bhattarai, R. Pandey, J. Madan, G.S. Sahoo, I. Hossain, S.M. Wabaidur, M.Z. Ansari, Numerical investigation of toxic free perovskite solar cells for achieving high efficiency. Mater. Today Commun. 35, 105893 (2023). https://doi.org/10.1016/j.mtcomm.2023.105893

    Article  CAS  Google Scholar 

  14. A. Kaity, Shubham, S. Singh, S.K. Pandey, Optimal design and photovoltaic performance of eco friendly, stable and efficient perovskite solar cell. Superlattices Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.106972

    Article  Google Scholar 

  15. M. Irfan, M.I. Ahmad, S. Akhtar, M.A.Z. Khan, M.A. Khan, Experimental and statistical study of leaching of niobium pentoxide from Pakistani ore. Chem. Ind. Chem. Eng. Q. 24, 51–58 (2018). https://doi.org/10.2298/CICEQ160518018I

    Article  CAS  Google Scholar 

  16. C.L. Ücker, L.T. Gularte, C.D. Fernandes, V. Goetzke, E.C. Moreira, C.W. Raubach, M.L. Moreira, S.S. Cava, Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells. J. Am. Ceram. Soc. 102, 1884–1892 (2019). https://doi.org/10.1111/jace.16080

    Article  CAS  Google Scholar 

  17. A.K. Patel, P.K. Rao, R. Mishra, S.K. Soni, Numerical study of a high-performance thin film CIGS solar cell with a-Si and MoTe2 hole transport layer. Optik (Stuttgart) (2021). https://doi.org/10.1016/j.ijleo.2021.167498

    Article  Google Scholar 

  18. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, n.d. www.elsevier.com/locate/tsf

  19. K. Decock, S. Khelifi, M. Burgelman, Modelling multivalent defects in thin film solar cells. Thin Solid Films 519, 7481–7484 (2011). https://doi.org/10.1016/j.tsf.2010.12.039

    Article  CAS  Google Scholar 

  20. A. Umar, P. Tiwari, Sadanand, V. Srivastava, P. Lohia, D.K. Dwivedi, H. Qasem, S. Akbar, H. Algadi, S. Baskoutas, Modeling and simulation of tin sulfide (SnS)-based solar cell using ZnO as transparent conductive oxide (TCO) and NiO as hole transport layer (HTL). Micromachines (Basel) (2022). https://doi.org/10.3390/mi13122073

    Article  PubMed  Google Scholar 

  21. V. Srivastava, R.K. Chauhan, P. Lohia, Lead free perovskite solar cell using TiO2 as an electron transport materials and Cu2O as a hole transport materials, in: Lecture Notes in Electrical Engineering, Springer Science and Business Media Deutschland GmbH, pp. 305–311 (2022). https://doi.org/10.1007/978-981-19-2631-0_28

  22. V. Srivastava, P. Lohia, R.K. Chauhan, Theoretical study of a lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerg. Mater. Res. 59, 1–10 (2022). https://doi.org/10.1680/jemmr.22.00059

    Article  Google Scholar 

  23. V. Srivastava, R.K. Chauhan, P. Lohia, Numerical analysis of Cs2AgBiBr6 double-perovskite solar cell with optimized performance. Nanomater. Energy 12, 1–8 (2023). https://doi.org/10.1680/jnaen.23.00023

    Article  Google Scholar 

  24. A.K. Patel, R. Mishra, S.K. Soni, Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer. Micro Nanostruct. 165, 207195 (2022). https://doi.org/10.1016/j.micrna.2022.207195

    Article  CAS  Google Scholar 

  25. N. Rai, S. Rai, P.K. Singh, P. Lohia, D.K. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31, 16269–16280 (2020). https://doi.org/10.1007/s10854-020-04175-z

    Article  CAS  Google Scholar 

  26. A.B. Coulibaly, S.O. Oyedele, N.R. Kre, B. Aka, Comparative study of lead-free perovskite solar cells using different hole transporter materials, modeling and numerical simulation of material. Science 09, 97–107 (2019). https://doi.org/10.4236/mnsms.2019.94006

    Article  CAS  Google Scholar 

  27. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. (Amst.) (2020). https://doi.org/10.1016/j.optmat.2020.109738

    Article  Google Scholar 

  28. P. Chauhan, S. Agarwal, V. Srivastava, S. Maurya, M. KhalidHossain, J. Madan, Rajesh, K. Yadav, P. Lohia, Dilip, K. Dwivedi, A.A. Alothman, C. Dilip, Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer Cu2ZnSnS4, CuSbS2 BSF layer, CZTS, In2Se3 buffer layer, SCAPS-1D. Prog. Photovolt. (2023). https://doi.org/10.1002/pip.3743

    Article  Google Scholar 

  29. J. Singh, S. Agarwal, V. Srivastava, M. Sadanand, M.K. Hossain, R. Pandey, J. Madan, P. Lohia, D.K. Dwivedi, M. Ouladsmane, Attaining above 30% efficiency of PbS-based colloidal quantum dot solar cell using MoO3 and SnO2 as charge transport layers: a numerical approach. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01449-7

    Article  Google Scholar 

  30. Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012

    Article  CAS  Google Scholar 

  31. M. Kumar, A. Raj, A. Kumar, A. Anshul, Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Opt. Mater. (Amst.) 111, 110565 (2021). https://doi.org/10.1016/j.optmat.2020.110565

    Article  CAS  Google Scholar 

  32. J. Singh, S. Singh, V. Srivastava, S. Sadanand, R. Yadav, P. Lohia, D.K. Dwivedi, Performance enhancement of PbS-TBAI quantum dot solar cell with MoTe2 as hole transport layer. Physica Status Solidi (a) (2023). https://doi.org/10.1002/pssa.202300275

    Article  Google Scholar 

  33. A. Gupta, S. Yadav, V. Srivastava, D.K. Dwivedi, P. Lohia, A. Umar, M.H. Mahmoud, Simulation of carbon-based perovskite solar cell using PBS-TBAI as a hole transport layer (HTL). Sci. Adv. Mater. 15, 655–661 (2023). https://doi.org/10.1166/sam.2023.4473

    Article  CAS  Google Scholar 

  34. A. Umar, V. Yadav, V. Srivastava, Sadanand, P. Lohia, D.K. Dwivedi, A.A. Ibrahim, S. Akbar, H. Qasem, S. Baskoutas, Optimizing quantum dot solar cells: exploring defect density effects with PTAA HTL layer simulation using SCAPS-1D. Emerg. Mater. Res. 12, 1–9 (2023). https://doi.org/10.1680/jemmr.22.00130

    Article  Google Scholar 

  35. V. Srivastava, R.K. Chauhan, P. Lohia, S. Yadav, Achieving above 25% efficiency from FA0.85Cs0.15Pb(I0.85Br0.15)3 perovskite solar cell through harnessing the potential of absorber and charge transport layers. Micro Nanostruct. 184, 207691 (2023). https://doi.org/10.1016/j.micrna.2023.207691

    Article  CAS  Google Scholar 

  36. A.K. Chaudhary, S. Verma, R.K. Chauhan, Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH3NH3GeI3 as ETL. Eng. Res. Express 5, 035039 (2023). https://doi.org/10.1088/2631-8695/acee45

    Article  Google Scholar 

  37. A. Mohandes, M. Moradi, H. Nadgaran, Perovskite using device simulation SCAPS - 1D. Opt. Quantum Electron 53, 1–22 (2021). https://doi.org/10.1007/s11082-021-02959-z

    Article  CAS  Google Scholar 

  38. V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. (India) (2022). https://doi.org/10.1007/s12596-022-00946-5

    Article  Google Scholar 

  39. Sadanand, D.K. Dwivedi, Modeling of CZTSSe solar photovoltaic cell for window layer optimization. Optik (Stuttgart) (2020). https://doi.org/10.1016/j.ijleo.2020.165407

    Article  Google Scholar 

  40. Sadanand, P.S. Babu, P.K. Singh, A.K. Thakur, D.K. Dwivedi, Optimization of photovoltaic solar cell performance via the earth abundant Zn3P2 back surface field. Optik (Stuttgart) (2021). https://doi.org/10.1016/j.ijleo.2020.166235

    Article  Google Scholar 

  41. M.K. Hossain, M.S. Uddin, G.F.I. Toki, M.K.A. Mohammed, R. Pandey, J. Madan, M.F. Rahman, M.R. Islam, S. Bhattarai, H. Bencherif, D.P. Samajdar, M. Amami, D.K. Dwivedi, Achieving above 24% efficiency with non-toxic CsSnI3 perovskite solar cells by harnessing the potential of the absorber and charge transport layers. RSC Adv. 13, 23514–23537 (2023). https://doi.org/10.1039/d3ra02910g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Chauhan, S. Agarwal, V. Srivastava, Sadanand, M.K. Hossain, R. Pandey, J. Madan, P. Lohia, D.K. Dwivedi, M. Amami, Kesterite CZTS based thin film solar cell: generation, recombination, and performance analysis. J. Phys. Chem. Solids 183, 111631 (2023). https://doi.org/10.1016/j.jpcs.2023.111631

    Article  CAS  Google Scholar 

  43. A. Umar, V. Yadav, V. Srivastava, Sadanand, P. Lohia, D.K. Dwivedi, A.A. Ibrahim, M.A.M. Alhamami, H. Qasem, S. Akbar, Simulation of efficient lead sulfide colloidal quantum dot solar cell using Spiro-OMeTAD as hole transport layer. Sci. Adv. Mater. 14, 1741–1749 (2023). https://doi.org/10.1166/sam.2022.4377

    Article  CAS  Google Scholar 

  44. M.K. Hossain, A.A. Arnab, D.P. Samajdar, M.H.K. Rubel, M.M. Hossain, M.R. Islam, R.C. Das, H. Bencherif, M.F. Rahman, J. Madan, R. Pandey, S. Bhattarai, M. Amami, D.K. Dwivedi, Design insights into La2NiMnO6-based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D frameworks. Energy Fuels (2023). https://doi.org/10.1021/acs.energyfuels.3c02361

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks Prof. Burgelman and his team (University of Ghent, Belgium) for providing SCAPS-1D tool for our studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Lohia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Chauhan, R.K., Lohia, P. et al. Investigation of Eco-friendly Perovskite Solar Cell Employing Niobium Pentoxide as Electron Transport Material using SCAPS-1D. Trans. Electr. Electron. Mater. 25, 294–303 (2024). https://doi.org/10.1007/s42341-024-00509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00509-4

Keywords

Navigation