Log in

Influence of substituting B2O3 with Li2O on the viscosity, structure and crystalline phase of low-reactivity mold flux

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The low-reactivity mold flux with low SiO2 content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO2 in mold flux. However, the traditional low-reactivity mold flux still presents some problems such as high viscosity and strong crystallization tendency. In this study, the co-addition of Li2O and B2O3 in CaO–Al2O3–10wt%SiO2 based low-reactivity mold flux was proposed to improve properties of mold flux for high-aluminum steel, and the effect of Li2O replacing B2O3 on properties of mold flux was investigated. The viscosity of the mold flux with 2wt% Li2O and 6wt% B2O3 reached a minimum value of 0.07 Pa·s. The break temperature and melting point showed a similar trend with the viscosity. Besides, the melt structure and precipitation of the crystalline phase were studied using Raman and X-ray diffraction spectra to better understand the evolution of viscosity. It demonstrated that with increasing Li2O content in the mold flux from 0 to 6wt%, the degree of polymerization of aluminate and the aluminosilicate network structure increased because of increasing Li+ released by Li2O, indicating the added Li2O was preferentially associated with Al3+ as a charge compensator. The precipitation of LiAlO2 crystalline phase gradually increased with the replacement of B2O3 by Li2O. Therefore, Li2O content should be controlled below 2wt% to avoid LiAlO2 precipitation, which was harmful to the continuous casting of high-aluminum steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Fu, G.H. Wen, P. Tang, Q. Liu, and Z.Y. Zhou, Effects of CaO/Al2O3 ratio on crystallisation behaviour of CaO–Al2O3 based mould fluxes for high aluminium TRIP steel, Ironmaking Steelmaking, 41(2014), No. 5, p. 342.

    Article  Google Scholar 

  2. H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe-10Mn–xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO–SiO2–Al2O3–MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 256.

    Article  CAS  Google Scholar 

  3. Y. Chen, S.P. He, Z.R. Li, X.B. Zhang, Q.Q. Wang, and Q. Wang, Properties and structure of a new non-reactive mold flux for high-Al steel, J. Iron Steel Res. Int., 29(2022), No. 1, p. 61.

    Article  CAS  Google Scholar 

  4. M.S. Kim and Y.B. Kang, A reaction model to simulate composition change of mold flux during continuous casting of high Al steel, [in] R.G. Reddy, P. Chaubal, P.C. Pistorius, U. Pal, eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, Springer, Cham, 2016, p. 271.

    Google Scholar 

  5. M.S. Kim, M.S. Park, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux: Reduction of additive oxide components in mold flux by Al in steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2077.

    Article  CAS  Google Scholar 

  6. M.S. Kim, M.S. Park, S.E. Kang, J.K. Park, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux: Reaction mechanism change by high Al content ([pct Al]0 = 5.2) in the steel and accumulation of reaction product at the reaction interface, ISIJ Int., 58(2018), No. 4, p. 686.

    Article  CAS  Google Scholar 

  7. M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux: Part I. composition evolution in molten mold flux, Metall. Mater. Trans. B, 44(2013), No. 2, p. 299.

    Article  CAS  Google Scholar 

  8. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353.

    Article  CAS  Google Scholar 

  9. G.H. Kim and I. Sohn, Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system, Metall. Mater. Trans. B, 45(2014), No. 1, p. 86.

    Article  CAS  Google Scholar 

  10. S.P. He, Z.R. Li, Z. Chen, T. Wu, and Q. Wang, Review of mold fluxes for continuous casting of high-alloy (Al, Mn, Ti) steels, Steel Res. Int., 90(2019), No. 1, art. No. 1800424.

  11. S. Street, K. James, N. Minor, A. Roelant, and J. Tremp, Production of high-aluminum steel slabs, Iron Steel Technol., 5(2008), No. 7, p. 38.

    CAS  Google Scholar 

  12. C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, and G.S. Zhu, Continuous casting of high-Al steel in Shougang **gtang steel works, J. Iron Steel Res. Int., 22(2015), No. 1, p. 53.

    Article  Google Scholar 

  13. H. Wang, Study on Crystallization Behaviors and Heat Transfer of High Al Steel Mould Fluxes [Dissertation], Chongqing university, Chongqing, 2010.

    Google Scholar 

  14. H. Wang, P. Tang, G.H. Wen, and X. Yu, Effect of Na2O on crystallisation behaviour and heat transfer of high Al steel mould fluxes, Ironmaking Steelmaking, 38(2011), No. 5, p. 369.

    Article  Google Scholar 

  15. T. Wu, S.P. He, L.L. Zhu, and Q. Wang, Study on reaction performances and applications of mold flux for high-aluminum steel, Mater. Trans., 57(2016), No. 1, p. 58.

    Article  CAS  Google Scholar 

  16. K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, and M. Frazee, Development and evaluation of lime alumina-based mold powders for casting high-aluminum TRIP steel grades, [in] AISTech, Iron and Steel Technology Conference and Exhibition, 2011, p. 1577.

  17. J.M. Li, M.F. Jiang, and L.F. Sun, Development of low responsiveness mold fluxes for 20Mn23AlV, China Metall., 27(2017), No. 12, p. 28.

    Google Scholar 

  18. H.M. Wang, T.W. Zhang, H. Zhu, G.R. Li, Y.Q. Yan, and J.H. Wang, Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int., 51(2011), No. 5, p. 702.

    Article  Google Scholar 

  19. J.L. Li, B.W. Kong, B. Galdino, et al., Investigation on properties of fluorine-free mold fluxes based on CaO–Al2O3–B2O3 system, Steel Res. Int., 88(2017), No. 9, art. No. 1600485.

  20. W. Yan, W.Q. Chen, Y.D. Yang, and A. McLean, Viscous characteristics and modelling of CaO–Al2O3–based mould flux with B2O3 as a substitute for CaF2, Ironmaking Steelmaking, 46(2019), No. 4, p. 347.

    Article  CAS  Google Scholar 

  21. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Evaluation of B2O3 as replacement for CaF2 in CaO-Al2O3 based mould flux, Ironmaking Steelmaking, 43(2016), No. 4, p. 316.

    Article  CAS  Google Scholar 

  22. X. Yu, G.H. Wen, P. Tang, and H. Wang, Effect of B2O3 on the physico-chemical properties of mold slag used for high-Al steel, J. Chongqing Univ., 34(2011), No. 1, p. 66.

    CAS  Google Scholar 

  23. X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, and Z.T. Zhang, Effect of B2O3 addition on viscosity of mould slag containing low silica content, Ironmaking Steelmaking, 41(2014), No. 1, p. 67.

    Article  CAS  Google Scholar 

  24. G.H. Kim and I. Sohn, Influence of Li2O on the viscous behavior of CaO-Al2O3-12 mass% Na2O-12 mass% CaF2 based slags, ISIJ Int., 52(2012), No. 1, p. 68.

    Article  CAS  Google Scholar 

  25. T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, and Y.J. Lu, Study on properties of alumina-based mould fluxes for high-Al steel slab casting, Steel Res. Int., 83(2012), No. 12, p. 1194.

    Article  CAS  Google Scholar 

  26. J.L. Li, B.W. Kong, X.Y. Gao, Q.C. Liu, Q.F. Shu, and K. Chou, Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO–Al2O3 based F-free mold flux, Metall. Res. Technol., 115(2018), No. 3, art. No. 304.

  27. J. Qi, C. Liu, and M. Jiang, Role of Li2O on the structure and viscosity in CaO–Al2O3–Li2O–Ce2O3 melts, J. Non Cryst. Solids, 475(2017), p. 101.

    Article  CAS  Google Scholar 

  28. L.J. Zhou, H. Li, W.L. Wang, D. **ao, L. Zhang, and J. Yu, Effect of Li2O on the behavior of melting, crystallization, and structure for CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2232.

    Article  CAS  Google Scholar 

  29. B.X. Lu, K. Chen, W.L. Wang, and B.B. Jiang, Effects of Li2O and Na2O on the crystallization behavior of lime-alumina-based mold flux for casting high-Al steels, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1496.

    Article  CAS  Google Scholar 

  30. J. Qi, C.J. Liu, C.L. Li, and M.F. Jiang, Viscous properties of new mould flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel, J. Rare Earths, 34(2016), No. 3, p. 328.

    Article  CAS  Google Scholar 

  31. J. Yang, H. Cui, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai, Effect of Na2O on the interfacial reaction between CaO-Al2O3 based mold fluxes and high-Al steel at 1500°C, ISIJ Int., 59(2019), No. 12, p. 2247.

    Article  CAS  Google Scholar 

  32. S. Seftharaman, S.C. Du, S. Sridhar, and K.C. Mills, Estimation of liquidus temperatures for multicomponent silicates from activation energies for viscous flow, Metall. Mater. Trans. B, 31(2000), No. 1, p. 111.

    Article  Google Scholar 

  33. J.Y. Chen, W.L. Wang, L.J. Zhou, and Z.H. Pan, Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux, J. Iron Steel Res. Int., 28(2021), No. 5, p. 552.

    Article  Google Scholar 

  34. J.T. Ju, K.S. Yang, Z.H. Zhu, Y. Gu, and L.Z. Chang, Effect of CaF2 and CaO/Al2O3 on viscosity and structure of TiO2-bearing slag for electroslag remelting, J. Iron Steel Res. Int., 28(2021), No. 12, p. 1541.

    Article  CAS  Google Scholar 

  35. F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Influence of Cr2O3 content on viscosity and rheological behavior of Cr2O3-containing slags, J. Iron Steel Res. Int., 29(2022), No. 4, p. 601.

    Article  CAS  Google Scholar 

  36. D.L. Zheng, G.J. Ma, X. Zhang, M.K. Liu, and J. Xu, Effect of CaO/Al2O3 on structure, viscosity, and surface tension of electroslag remelting-type CeO2-bearing slag, J. Iron Steel Res. Int., (2022), p. 1.

  37. L.J. Zhou, H. Luo, W.L. Wang, X. Yan, and H.F. Wu, Effect of Al2O3/Na2O ratio and MnO on high-temperature properties of mold flux for casting peritectic steel, J. Iron Steel Res. Int., 29(2022), No. 1, p. 53.

    Article  CAS  Google Scholar 

  38. F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522.

    Article  CAS  Google Scholar 

  39. C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797.

    Article  CAS  Google Scholar 

  40. B.T. Poe, P.F. McMillan, B. Coté, D. Massiot, and J.P. Coutures, Structure and dynamics in calcium aluminate liquids: High-temperature 27Al NMR and Raman spectroscopy, J. Am. Ceram. Soc., 77(1994), No. 7, p. 1832.

    Article  CAS  Google Scholar 

  41. P.F. McMillan, W.T. Petuskey, B. Coté, D. Massiot, C. Landron, and J.P. Coutures, A structural investigation of CaO-Al2O3 glasses via 27Al MAS-NMR, J. Non Cryst. Solids, 195(1996), No. 3, p. 261.

    Article  CAS  Google Scholar 

  42. D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229(2006), No. 1–3, p. 173.

    Article  CAS  Google Scholar 

  43. V.P. Klyuev and B.Z. Pevzner, The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses, Glass Phys. Chem., 28(2002), No. 4, p. 207.

    Article  CAS  Google Scholar 

  44. V.P. Klyuev and B. Pevzner, Structural interpretation of the glass transition temperature and thermal expansion of glasses in the system BaO–Al2O3–B2O3, Phys. Chem. Glasses, 41(2000), p. 380.

    CAS  Google Scholar 

  45. J. Qi, C.J. Liu, and M.F. Jiang, Viscosity-structure-crystallization of the Ce2O3-bearing calcium-aluminate-based melts with different contents of B2O3, ISIJ Int., 58(2018), No. 1, p. 186.

    Article  CAS  Google Scholar 

  46. G. Padmaja and P. Kistaiah, Infrared and Raman spectroscopic studies on alkali borate glasses: Evidence of mixed alkali effect, J. Phys. Chem. A, 113(2009), No. 11, p. 2397.

    Article  CAS  Google Scholar 

  47. J.H. Park, D.J. Min, and H.S. Song, Structural investigation of CaO-Al2O3 and CaO-Al2O3-CaF2 slags via Fourier transform infrared spectra, ISIJ Int., 42(2002), No. 1, p. 38.

    Article  CAS  Google Scholar 

  48. N. Ma, J.L. You, L.M. Lu, J. Wang, M. Wang, and S.M. Wan, Micro-structure studies of the molten binary K3AlF6–Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation, Inorg. Chem. Front., 5(2018), No. 8, p. 1861.

    Article  CAS  Google Scholar 

  49. J. Yang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO-Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1766.

    Article  CAS  Google Scholar 

  50. P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non Cryst. Solids, 55(1983), No. 2, p. 221.

    Article  CAS  Google Scholar 

  51. T.S. Kim and J.H. Park, Structure-viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031.

    Article  CAS  Google Scholar 

  52. H. Li, P. Hrma, J.D. Vienna, M.X. Qian, Y.L. Su, and D.E. Smith, Effects of Al2O3, B2O3, Na2O, and SiO2 on nepheline formation in borosilicate glasses: Chemical and physical correlations, J. Non Cryst. Solids, 331(2003), No. 1–3, p. 202.

    Article  CAS  Google Scholar 

  53. E.Z. Gao, W.L. Wang, and L. Zhang, Effect of alkaline earth metal oxides on the viscosity and structure of the CaO-Al2O3 based mold flux for casting high-al steels, J. Non Cryst. Solids, 473(2017), p. 79.

    Article  CAS  Google Scholar 

  54. J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu, Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride, J. Am. Ceram. Soc., 99(2016), No. 12, p. 3941.

    Article  CAS  Google Scholar 

  55. G.H. Kim and I. Sohn, Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2, J. Non Cryst. Solids, 358(2012), No. 12–13, p. 1530.

    Article  CAS  Google Scholar 

  56. R. El Hayek, F. Ferey, P. Florian, A. Pisch, and D.R. Neuville, Structure and properties of lime alumino-borate glasses, Chem. Geol., 461(2017), p. 75.

    Article  CAS  Google Scholar 

  57. L.S. Du and J.F. Stebbins, Site connectivities in sodium aluminoborate glasses: Multinuclear and multiple quantum NMR results, Solid State Nucl. Magn. Reson., 27(2005), No. 1–2, p. 37.

    Article  CAS  Google Scholar 

  58. D.R. Neuville, G.S. Henderson, L. Cormier, and D. Massiot, The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and AT-edge X-ray absorption, and 27Al NMR spectroscopy, Am. Mineral., 95(2010), No. 10, p. 1580.

    Article  CAS  Google Scholar 

  59. P. McMillan, Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy, Am. Mineral., 69(1984), No. 7–8, p. 622.

    CAS  Google Scholar 

  60. B.O. Mysen and D. Virgo, Structure and properties of fluorine-bearing aluminosilicate melts: The system Na2O–Al2O3–SiO2–F at 1 atm, Contr. Mineral. Petrol., 91(1985), No. 3, p. 205.

    Article  CAS  Google Scholar 

  61. J.Y. Park, G.H. Kim, J.B. Kim, S. Park, and I. Sohn, Thermophysical properties of B2O3-containing mold flux for high carbon steels in thin slab continuous casters: Structure, viscosity, crystallization, and wettability, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2582.

    Article  CAS  Google Scholar 

  62. B.P. Dwivedi and B.N. Khanna, Cation dependence of Raman scattering in alkali borate glasses, J. Phys. Chem. Solids, 56(1995), No. 1, p. 39.

    Article  CAS  Google Scholar 

  63. H. Li, Y.L. Su, L.Y. Li, and D.M. Strachan, Raman spectroscopic study of gadolinium(III) in sodium-aluminoborosilicate glasses, J. Non Cryst. Solids, 292(2001), No. 1–3, p. 167.

    Article  CAS  Google Scholar 

  64. E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 91(1987), No. 5, p. 1073.

    Article  CAS  Google Scholar 

  65. Y. Kim and K. Morita, Relationship between molten oxide structure and thermal conductivity in the CaO–SiO2–B2O3 system, ISIJ Int., 54(2014), No. 9, p. 2077.

    Article  CAS  Google Scholar 

  66. X.D. **ng, Z.G. Pang, C. Mo, S. Wang, and J.T. Ju, Effect of MgO and BaO on viscosity and structure of blast furnace slag, J. Non Cryst. Solids, 530(2020), art. No. 119801.

  67. L. Zhang, W.L. Wang, S.L. **e, K.X. Zhang, and I. Sohn, Effect of basicity and B2O3 on the viscosity and structure of fluorine-free mold flux, J. Non Cryst. Solids, 460(2017), p. 113.

    Article  CAS  Google Scholar 

  68. D. **ao, W.L. Wang, and B.X. Lu, Effects of B2O3 and BaO on the crystallization behavior of CaO–Al2O3-based mold flux for casting high-Al steels, Metall. Mater. Trans. B, 46(2015), No. 2, p. 873.

    Article  CAS  Google Scholar 

  69. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Effect of CaO/Al2O3 ratio on viscosity and crystallisation behaviour of mould flux for high Al non-magnetic steel, Ironmaking Steelmaking, 42(2015), No. 9, p. 698.

    Article  CAS  Google Scholar 

  70. Q. Wang, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, and O. Ostrovski, Effect of CaO/Al2O3 ratio on viscosity and structure of CaO-Al2O3-based fluoride-free mould fluxes, J. Iron Steel Res. Int., 26(2019), No. 4, p. 374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation China (No. U22A20171) and the Scinence and Technology Program of Hebei, China (No. 20311004D). We also appreciate the other support from High Steel Center (HSC) at North China University of Technology, Yanshan University, University of Science and Technology Bei**g, Hebei Innovation Center of the Development and Application of High Quality Steel Materials, China, and Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, R., Zhang, X., Ren, Y. et al. Influence of substituting B2O3 with Li2O on the viscosity, structure and crystalline phase of low-reactivity mold flux. Int J Miner Metall Mater 30, 1320–1328 (2023). https://doi.org/10.1007/s12613-023-2621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2621-x

Keywords

Navigation