Log in

Effects of Li2O and Na2O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag–steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, no. 1, pp. 26-34.

    Article  Google Scholar 

  2. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: AISTech 2011, AIST, Warrendale, PA, 2011.

    Google Scholar 

  3. Y. Kanbe, T. Ishii, H. Todoroki, and K. Mizuno: Int. J. Cast. Met. Res., 2009, vol. 22, p. 143.

    Article  Google Scholar 

  4. Z. Zhang, G.H. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, p. 739.

    Article  Google Scholar 

  5. J. Liao, Y. Zhang, S. Sridhar, X. Wang, and Z. Zhang: ISIJ Int., 2012, vol. 52, p. 753.

    Google Scholar 

  6. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, p. 1.

    Article  Google Scholar 

  7. H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, p. 324.

    Article  Google Scholar 

  8. W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, p. 66.

    Article  Google Scholar 

  9. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: ECCC-METEC, Steel Institute VDEh, Düsseldorf, Germany, 2011.

    Google Scholar 

  10. J.-W. Cho, K. Blazek, M. Frazee, and H. Yin: ISIJ Int., 2013, vol 53, no. 1, pp. 62-70.

    Article  Google Scholar 

  11. M. Hayashi, T. Watanabe, H. Nakada, and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 1805-09.

    Article  Google Scholar 

  12. Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: Proc. Steelmaking Conf., Toronto, Ontario, Canada, Iron and Steel Society, 1998, pp. 185–91.

  13. T. Omoto, H. Ogata, and J. Itoh: Shinagawa Tech. Rep., 2006, vol. 49, p. 73.

  14. H. Wang, P. Tang, G.H. Wen, and X. Yu: Ironmaking Steelmaking, 2011, vol. 38, p. 369.

    Article  Google Scholar 

  15. L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, p. 925.

    Article  Google Scholar 

  16. Z. Li, R. Thackray, and K.C. Mills: J. S. Afr. Inst. Min. Metall., 2004, pp. 813–29.

  17. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 707-25.

    Article  Google Scholar 

  18. A.W. Cramb: Report: American Iron and Steel Institute, Technology Roadmap Program, Pittsburgh, PA, 2003.

    Google Scholar 

  19. L. Zhou and W. Wang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925-36.

    Article  Google Scholar 

  20. G.H. Kim, C. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170-76.

    Article  Google Scholar 

  21. S.S. Jung, G.H. Kim, and I. Sohn. Trans. Indian Inst. Met., 2013, vol. 66, pp. 577-85.

    Article  Google Scholar 

  22. X. Yu: Ph.D. Dissertation, Chongqing University, Chongqing, China, 2011.

  23. W. Yan, W. Chen, C. Lippold, and H. Zheng. Special Steel, 2013, vol. 34, pp. 45-48.

    Google Scholar 

Download references

Acknowledgments

The financial support from NSFC (51274244 and 51322405) and the Fundamental Research Funds for the Central Universities (2011JQ010) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted November 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Chen, K., Wang, W. et al. Effects of Li2O and Na2O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels. Metall Mater Trans B 45, 1496–1509 (2014). https://doi.org/10.1007/s11663-014-0063-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0063-6

Keywords

Navigation