Log in

Prediction of mechanical properties for deep drawing steel by deep learning

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

At present, iron and steel enterprises mainly use “after spot test ward” to control final product quality. However, it is impossible to realize on-line quality predetermining for all products by this traditional approach, hence claims and returns often occur, resulting in major economic losses of enterprises. In order to realize the on-line quality predetermining for steel products during manufacturing process, the prediction models of mechanical properties based on deep learning have been proposed in this work. First, the mechanical properties of deep drawing steels were predicted by using LSTM (long short team memory), GRU (gated recurrent unit) network, and GPR (Gaussian process regression) model, and prediction accuracy and learning efficiency for different models were also discussed. Then, on-line re-learning methods for transfer learning models and model parameters were proposed. The experimental results show that not only the prediction accuracy of optimized transfer learning models has been improved, but also predetermining time was shortened to meet real time requirements of on-line property predetermining. The industrial production data of interstitial-free (IF) steel was used to demonstrate that R2 value of GRU model in training stage reaches more than 0.99, and R2 value in testing stage is more than 0.96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. **e and J.C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett., 120(2018), No. 14, art. No. 145301.

  2. L. Ward, S.C. O’Keeffe, J. Stevick, et al., A machine learning approach for engineering bulk metallic glass alloys, Acta Mater., 159(2018), p. 102.

    Article  CAS  Google Scholar 

  3. D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, and J.A. Haynes, Modern data analytics approach to predict creep of high-temperature alloys, Acta Mater., 168(2019), p. 321.

    Article  CAS  Google Scholar 

  4. C. Wang, D.Q. Shi, and S.L. Li, A study on establishing a microstructure-related hardness model with precipitate segmentation using deep learning method, Materials (Basel), 13(2020), No. 5, art. No. 1256.

  5. K. Rajan, Materials informatics: The materials “gene” and big data, Annu. Rev. Mater. Res., 45(2015), p. 153.

    Article  CAS  Google Scholar 

  6. S. Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data, Butterworth-Heinemann, 2015.

  7. K. Kim, L. Ward, J.G. He, et al., Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds, Phys. Rev. Mater., 2(2018), No. 12, art. No. 123801.

  8. C.W. Rosenbrock, K. Gubaev, A.V. Shapeev, et al., Machine-learned interatomic potentials for alloys and alloy phase diagrams, npj Comput. Mater., 7(2021), No. 1, p. 1.

    Article  Google Scholar 

  9. C. Nyshadham, M. Rupp, B. Bekker, et al., Machine-learned multi-system surrogate models for materials prediction, npj Comput. Mater., 5(2019), art. No. 51.

  10. Y.S. Fan, X.G. Yang, D.Q. Shi, L. Tan, and W.Q. Huang, Quantitative map** of service process-microstructural degradation-property deterioration for a Ni-based superalloy based on chord length distribution imaging process, Mater. Des., 203(2021), art. No. 109561.

  11. B. Yucel, S. Yucel, A. Ray, L. Duprez, and S.R. Kalidindi, Mining the correlations between optical micrographs and mechanical properties of cold-rolled HSLA steels using machine learning approaches, Integrating Mater. Manuf. Innov., 9(2020), No. 3, p. 240.

    Article  Google Scholar 

  12. N.H. Paulson, M.W. Priddy, D.L. McDowell, and S.R. Kalidindi, Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics, Acta Mater., 129(2017), p. 428.

    Article  CAS  Google Scholar 

  13. A. Mangal and E.A. Holm, Applied machine learning to predict stress hotspots I: Face centered cubic materials, Int. J. Plast., 111(2018), p. 122.

    Article  CAS  Google Scholar 

  14. A. Mangal and E.A. Holm, A comparative study of feature selection methods for stress hotspot classification in materials, Integrating Mater. Manuf. Innov., 7(2018), No. 3, p. 87.

    Article  Google Scholar 

  15. P. Fernandez-Zelaia, V. Roshan Joseph, S.R. Kalidindi, and S.N. Melkote, Estimating mechanical properties from spherical indentation using Bayesian approaches, Mater. Des., 147(2018), p. 92.

    Article  Google Scholar 

  16. A. Solomou, G. Zhao, S. Boluki, et al., Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling, Mater. Des., 160(2018), p. 810.

    Article  CAS  Google Scholar 

  17. A. Rovinelli, M.D. Sangid, H. Proudhon, et al., Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations, J. Mech. Phys. Solids, 115(2018), p. 208.

    Article  CAS  Google Scholar 

  18. G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A. Elwany, Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel, Int. J. Adv. Manuf. Technol., 94(2018), No. 9–12, p. 3591.

    Article  Google Scholar 

  19. L.B. Meng and J. Zhang, Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model, JOM, 72(2020), No. 1, p. 420.

    Article  CAS  Google Scholar 

  20. B.L. DeCost, B. Lei, T. Francis, and E.A. Holm, High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel, Microsc. Microanal., 25(2019), No. 1, p. 21.

    Article  CAS  Google Scholar 

  21. D. Morgan and R. Jacobs, Opportunities and challenges for machine learning in materials science, Annu. Rev. Mater. Res., 50(2020), No. 1, p. 71.

    Article  CAS  Google Scholar 

  22. T. Thankachan, K.S. Prakash, C. David Pleass, et al., Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen, Int. J. Hydrog. Energy, 42(2017), No. 47, p. 28612.

    Article  CAS  Google Scholar 

  23. S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300.

    Article  Google Scholar 

  24. F. Brun, T. Yoshida, J.D. Robson, et al., Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models, Mater. Sci. Technol., 15(1999), No. 5, p. 547.

    Article  CAS  Google Scholar 

  25. G.L.W. Hart, T. Mueller, C. Toher, and S. Curtarolo, Machine learning for alloys, Nai. Rev. Mater., 6(2021), No. 8, p. 730.

    Article  Google Scholar 

  26. R. Kondo, S. Yamakawa, Y. Masuoka, S. Tajima, and R. Asahi, Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics, Acta Mater., 141(2017), p. 29.

    Article  CAS  Google Scholar 

  27. A. Cecen, H.J. Dai, Y.C. Yabansu, S.R. Kalidindi, and L. Song, Material structure-property linkages using three-dimensional convolutional neural networks, Acta Mater., 146(2018), p. 76.

    Article  CAS  Google Scholar 

  28. A. Nouira, J. Crivello, and N. Sokolovska, CrystalGAN: learning to discover crystallographic structures with generative adversarial networks, 2018, ar**v:1810.11203. DOI: https://doi.org/10.48550/ar**v.1810.11203

  29. T. **e and J.C. Grossman, Hierarchical visualization of materials space with graph convolutional neural networks, J. Chem. Phys., 149(2018), No. 17, art. No. 174111.

  30. C. Chen, W.K. Ye, Y.X. Zuo, C. Zheng, and S.P. Ong, Graph networks as a universal machine learning framework for molecules and crystals, Chem. Mater., 31(2019), No. 9, p. 3564.

    Article  CAS  Google Scholar 

  31. V. Korolev, A. Mitrofanov, A. Korotcov, and V. Tkachenko, Graph convolutional neural networks as “general-purpose” property predictors: The universality and limits of applicability, J. Chem. Inf. Model., 60(2020), No. 1, p. 22.

    Article  CAS  Google Scholar 

  32. C.W. Park and C. Wolverton, Develo** an improved crystal graph convolutional neural network framework for accelerated materials discovery, Phys. Rev. Mater., 4(2020), No. 6, art. No. 063801.

  33. B. Ma, X. Wei, C. Liu, et al., Data augmentation in microscopic images for material data mining, npj Comput. Mater., 6(2020), art. No. 125.

  34. S. Curtarolo, G.L. Hart, M.B. Nardelli, et al., The high-throughput highway to computational materials design, Nai. Mater., 12(2013), No. 3, p. 191.

    CAS  Google Scholar 

  35. I. Tanaka, K. Rajan, and C. Wolverton, Data-centric science for materials innovation, MRS Bull., 43(2018), No. 9, p. 659.

    Article  Google Scholar 

  36. R. Arróyave and D.L. McDowell, Systems approaches to materials design: Past, present, and future, Annu. Rev. Mater. Res., 49(2019), p. 103.

    Article  Google Scholar 

  37. B. Nenchev, Q. Tao, Z. Dong, C. Panwisawas, H. Li, B. Tao, and H. Dong, Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 836.

    Article  Google Scholar 

  38. S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52175284) and the State Key Lab of Advanced Metals and Materials in University of Science and Technology Bei**g (No. 2021-ZD08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu.

Additional information

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., He, J., Lü, Z. et al. Prediction of mechanical properties for deep drawing steel by deep learning. Int J Miner Metall Mater 30, 156–165 (2023). https://doi.org/10.1007/s12613-022-2547-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2547-8

Keywords

Navigation