Log in

Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model

  • ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, a Gaussian process (GP)-based machine learning model is developed to predict the remelted depth of single tracks, as a function of combined laser power and laser scan speed in a laser powder bed fusion process. The GP model is trained by both simulation and experimental data from the literature. The mean absolute prediction error magnified by the GP model is only 0.6 μm for a powder bed with layer thickness of 30 μm, suggesting the adequacy of the GP model. Then, the process design maps of two metals, 316L and 17-4 PH stainless steels, are developed using the trained model. The normalized enthalpy criterion of identifying keyhole mode is evaluated for both stainless steels. For 316L, the result suggests that the \( \frac{\Delta H}{{h_{s} }} \ge 30 \) criterion should be related to the powder layer thickness. For 17-4 PH, the criterion should be revised to \( \frac{\Delta H}{{h_{s} }} \ge 25 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Tapia and A. Elwany, J. Eng. Ind. 136, 060801 (2014).

    Google Scholar 

  2. R. Rai, J. Elmer, T. Palmer, and T. DebRoy, J. Phys. D 40, 5753 (2007).

    Article  Google Scholar 

  3. J.D. Madison and L.K. Aagesen, Scr. Mater. 67, 783 (2012).

    Article  Google Scholar 

  4. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, J. Mater. Process. Technol. 178, 135 (2006).

    Article  Google Scholar 

  5. C. Kamath, Int. J. Adv. Manuf. Technol. 86, 1659 (2016).

    Article  Google Scholar 

  6. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol 214, 2915 (2014).

    Article  Google Scholar 

  7. M. Yan and P. Yu, in Sintering Techniques of Materials (InTech, 2015). https://doi.org/10.5772/59275.

    Google Scholar 

  8. Q. Guo, C. Zhao, L.I. Escano, Z. Young, L. **ong, K. Fezzaa, W. Everhart, B. Brownd, T. Sun, and L. Chen, Acta Mater. 151, 169 (2018).

    Article  Google Scholar 

  9. A. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, J. Heat Transf. 131, 072101 (2009).

    Article  Google Scholar 

  10. C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto, Comput. Mater. Sci. 126, 479 (2017).

    Article  Google Scholar 

  11. J. Zhang, Y. Zhang, W.H. Lee, L. Wu, H.-H. Choi, and Y.-G. Jung, Met. Powder Rep. (2018). https://doi.org/10.1016/j.mprp.2018.01.003.

    Article  Google Scholar 

  12. Y. Zhang and J. Zhang, J. Mater. Res. 31, 2233 (2016).

    Article  Google Scholar 

  13. Y. Zhang and J. Zhang, Addit. Manuf. 16, 49 (2017).

    Article  Google Scholar 

  14. Y. Zhang, X. **ao, and J. Zhang, Results Phys. 13, 102336 (2019).

    Article  Google Scholar 

  15. J. Zhang, L. Wu, Y. Zhang, and L. Meng, Met. Powder Rep. 74, 20 (2019).

    Article  Google Scholar 

  16. Y. Zhang and J. Zhang, Addit. Manuf. 28, 750 (2019).

    Article  MathSciNet  Google Scholar 

  17. E. Alpaydin, Introduction to Machine Learning, 2nd ed. (London: MIT, 2009), pp. 4–16.

    Google Scholar 

  18. Z. Zhu, N. Anwer, Q. Huang, and L. Mathieu, CIRP Ann. (2018). https://doi.org/10.1016/j.cirp.2018.04.119.

    Article  Google Scholar 

  19. G. Tapia, A. Elwany, and H. Sang, Addit. Manuf. 12, 282 (2016).

    Article  Google Scholar 

  20. G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A. Elwany, Int. J. Adv. Manuf. Technol. 94, 3591 (2018).

    Article  Google Scholar 

  21. F. Caiazzo and A. Caggiano, Mater 11, 444 (2018).

    Article  Google Scholar 

  22. J. Zhang, P. Wang, and R.X. Gao, Comput. Ind. 107, 11 (2019).

    Article  Google Scholar 

  23. Mojtaba Mozaffar, Arindam Paul, Reda Al-Bahrani, Sarah Wolff, Alok Choudhary, Ankit Agrawal, Kornel Ehmann, and Jian Cao, Manuf. Lett. 18, 35 (2018).

    Article  Google Scholar 

  24. S. Haykin, Neural Networks: a Comprehensive Foundation, 1st ed. (Prentice Hall PTR: Upper Saddle River, 2009).

    MATH  Google Scholar 

  25. C.K. Williams and C.E. Rasmussen, Gaussian Processes for Machine Learning, 1st ed. (London: MIT, 2016).

    MATH  Google Scholar 

  26. GPy, GPy: A gaussian process framework in python. https://sheffieldml.github.io/GPy/. Accessed 1 July 2019.

  27. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).

    Article  Google Scholar 

  28. I. Choquet, A.J. Shirvan, and H. Nilsson, J. Phys. D 45, 205203 (2012).

    Article  Google Scholar 

  29. M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, J. Phys. D 46, 505305 (2013).

    Article  Google Scholar 

  30. W. Tan, N.S. Bailey, and Y.C. Shin, J. Phys. D 46, 055501 (2013).

    Article  Google Scholar 

  31. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, J. Mater. Process. Technol. 213, 606 (2013).

    Article  Google Scholar 

  32. T. Eagar and N. Tsai, Weld. J. 62, 346 (1983).

    Google Scholar 

  33. V.-P. Matilainen, H. Piili, A. Salminen, and O. Nyrhilä, Phys. Procedia 78, 377 (2015).

    Article  Google Scholar 

  34. Y. Zhang, Multi-Scale Multi-Physics Modeling of Laser Powder Bed Fusion Process of Metallic Materials With Experiment Validation, PhD thesis, Purdue University, 2018.

  35. D. Hann, J. Iammi, and J. Folkes, J. Phys. D Appl. Phys. 44, 445401 (2011).

    Article  Google Scholar 

  36. C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the National Science Foundation (No. 1836555), Walmart Foundation (project title: Optimal Plastic Injection Molding Tooling Design and Production through Advanced Additive Manufacturing), and Praxair’s TruForm™ AMbition Grant awarded to Indiana University-Purdue University Indianapolis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Zhang, J. Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model. JOM 72, 420–428 (2020). https://doi.org/10.1007/s11837-019-03792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03792-2

Navigation