Log in

A review on construction of logic gates by using soliton in all-optical communication system

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Logic gates are an extremely important structural component for logical operations and high-speed data transmission now-a-days. Initially, logic gates were functioning with electrical signals; however, for wide bandwidth and high-speed transmission, they can also work with optical signals. Data are processed by digital logic gates in a variety of ways, and we explored data analysis for logic design in a number of potential ways. We examine all the many facets of digital signal processing. With optical signals, data are sent incredibly quickly in a nearly dispersion-free condition. We go over the different facets of logic design here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Kotb, K.E. Zoiros, Soliton all-optical logic AND gate with semiconductor optical amplifier-assisted Mach-Zehnder interferometer. Opt. Eng. 55, 087109 (2016). https://doi.org/10.1117/1.oe.55.8.087109

    Article  ADS  Google Scholar 

  2. A. Raja, K. Mukherjee, J.N. Roy, Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J. Comput. Electron. 20, 387–396 (2021). https://doi.org/10.1007/s10825-020-01607-1

    Article  Google Scholar 

  3. M.D.I. Castillo, P.A.M. Aguilar, J.J. Sanchez-Mondragon, S. Stepanov, V. Vysloukh, Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity. Appl. Phys. Lett. 64, 408–410 (1994). https://doi.org/10.1063/1.111163

    Article  ADS  Google Scholar 

  4. Y. Yin, J. Liu, C. She, A new fault-tolerant single-bit comparator in QCA technology using a novel X-NOR gate. Optik (Stuttg). 269, 169837 (2022). https://doi.org/10.1016/j.ijleo.2022.169837

    Article  ADS  Google Scholar 

  5. A. Hasegawa, An historical review of application of optical solitons for high speed communications. Chaos 10, 475–485 (2000). https://doi.org/10.1063/1.1286914

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Ghadi, All-optical computing circuits half-subtractor and comparator based on soliton interactions. Optik (Stuttg). 227, 166079 (2021). https://doi.org/10.1016/j.ijleo.2020.166079

    Article  ADS  Google Scholar 

  7. S. Swarnakar, S. Kumar, S. Sharma, Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 17, 1124–1134 (2018). https://doi.org/10.1007/s10825-018-1177-x

    Article  Google Scholar 

  8. H. Thapliyal, N. Ranganathan, A new design of the reversible subtractor circuit, (2011) 1430–1435.

  9. A.M. Alatwi, A.N.Z. Rashed, A pulse amplitude modulation scheme based on in-line semiconductor optical amplifiers (soas) for optical soliton systems. Indones. J. Electr. Eng. Comput. Sci. 21, 1014–1021 (2021)

    Google Scholar 

  10. K. Mukherjee, K. Maji, A. Raja, All optical four bit two’s complement generator and single bit comparator using reflective semiconductor optical amplifier. Int. J. Nano Biomater. 9, 64 (2020). https://doi.org/10.1504/ijnbm.2020.10029635

    Article  Google Scholar 

  11. P. Singh, D.K. Tripathi, S. Jaiswal, H.K. Dixit, All-optical logic gates: Designs, classification, and comparison. Adv. Opt. Technol. (2014). https://doi.org/10.1155/2014/275083

    Article  Google Scholar 

  12. M.N. Islam, All-optical cascadable NOR gate with gain. Opt. Lett. 15, 417 (1990). https://doi.org/10.1364/ol.15.000417

    Article  ADS  Google Scholar 

  13. M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, M. Fukuda, Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci. Rep. (2016). https://doi.org/10.1038/SREP24546

    Article  Google Scholar 

  14. J. Scheuer, M. Orenstein, All-optical gates facilitated by soliton interactions in a multilayered Kerr medium. J. Opt. Soc. Am. B 22, 1260 (2005). https://doi.org/10.1364/josab.22.001260

    Article  ADS  Google Scholar 

  15. P.K. Nahata, A. Ahmed, S. Yadav, N. Nair, S. Kaur, All optical full-adder and full-subtractor using semiconductor optical amplifiers and all-optical logic gates. In: 2020 7th Int. Conf. Signal Process. Integr. Networks, SPIN 2020. (2020) 1044–1049. https://doi.org/10.1109/SPIN48934.2020.9071009.

  16. P. Kuila, A. Sinha, S. Mukhopadhyay, An all-optical remote controlled X-Nor logic using soliton pulse. Optoelectron. Lett. 4, 0365–0368 (2008). https://doi.org/10.1007/s11801-008-8061-z

    Article  ADS  Google Scholar 

  17. M.N. Islam, Ultrafast all-optical logic gates based on soliton trap** in fibers. Opt. Lett. 14, 1257 (1989). https://doi.org/10.1364/ol.14.001257

    Article  ADS  Google Scholar 

  18. Y. Wu, All-Optical Logic Gates Based on Spatial-Soliton Interaction 43, 71–79 (2015)

    Google Scholar 

  19. S.K. Garai, S. Mukhopadhyay, A method of optical implementation of frequency encoded different logic operations using second harmonic and difference frequency generation techniques in non-linear material. Opt. Int J. Light Electron Opt. 121, 715–721 (2010). https://doi.org/10.1016/j.ijleo.2008.10.011

    Article  Google Scholar 

  20. S.K. Pal, S. Mukhopadhyay, Analytical approach of using the squeezed state formation of light for conducting all-optical noise free XOR and NOT logic operation. Optik (Stuttg). 122, 411–414 (2011). https://doi.org/10.1016/j.ijleo.2010.02.023

    Article  ADS  Google Scholar 

  21. A. Ghadi, S. Sohrabfar, All-optical multiple logic gates based on spatial optical soliton interactions. IEEE Photonics Technol. Lett. 30, 569–572 (2018). https://doi.org/10.1109/LPT.2018.2805769

    Article  ADS  Google Scholar 

  22. S.T. Cundiff, B.C. Collings, K. Bergman, Polarization locked vector solitons and axis instability in optical fiber. Chaos 10, 613–624 (2000). https://doi.org/10.1063/1.1286246

    Article  ADS  Google Scholar 

  23. K. Maji, K. Mukherjee, Analysis of Soliton based OR Gate using Dual-Control Terahertz Optical Asymmetric Demultiplexer ( DCTOAD ), (2019).

  24. S.F. Preble, Q. Xu, B.S. Schmidt, M. Lipson, Ultrafast all-optical modulation on a silicon chip. Opt. Lett. 30, 2891 (2005). https://doi.org/10.1364/ol.30.002891

    Article  ADS  Google Scholar 

  25. Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019). https://doi.org/10.1063/1.5091811

    Article  ADS  Google Scholar 

  26. E. Haq Shaik, N. Rangaswamy, Realization of all-optical NAND and NOR logic functions with photonic crystal based NOT, OR and AND gates using De Morgan’s theorem. J. Opt. 47(8), 21 (2018). https://doi.org/10.1007/s12596-017-0441-y

    Article  Google Scholar 

  27. S. Kumar, A. Bisht, G. Singh, K. Choudhary, K.K. Raina, Design of 1-bit and 2-bit magnitude comparators using electro-optic effect in Mach – Zehnder interferometers design of 1-bit and 2-bit magnitude comparators using electro-optic effect in Mach – Zehnder interferometers. Opt. Commun. 357, 127–147 (2020). https://doi.org/10.1016/j.optcom.2015.08.074

    Article  ADS  Google Scholar 

  28. J. Shen, S. Yu, P. Liao, Z. Chen, W. Gu, H. Guo, All-optical full-adder based on cascaded PPLN waveguides. IEEE J. Quantum Electron. 47, 1195–1200 (2011). https://doi.org/10.1109/JQE.2011.2161269

    Article  ADS  Google Scholar 

  29. A. Raja, K. Mukherjee, J.N. Roy, Analysis of new all optical polarization-encoded Dual SOA-based ternary NOT and XOR gate with simulation. Photonic Netw. Commun. 41, 242–251 (2021). https://doi.org/10.1007/S11107-021-00932-0/METRICS

    Article  Google Scholar 

  30. P. Rani, Y. Kalra, R.K. Sinha, Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148–155 (2016). https://doi.org/10.1016/j.optcom.2016.04.037

    Article  ADS  Google Scholar 

  31. J. Goswami, S. Chandra, B. Ghosh, Study of small amplitude ion-acoustic solitary wave structures and amplitude modulation in e – p – i plasma with streaming ions, (2018).

  32. A. Das, P. Ghosh, S. Chandra, V. Raj, Electron acoustic peregrine breathers in a quantum plasma With 1-D temperature anisotropy. IEEE Trans. Plasma Sci. 50, 1598–1609 (2022). https://doi.org/10.1109/TPS.2021.3113727

    Article  ADS  Google Scholar 

  33. A. Ghosh, J. Goswami, S. Chandra, C. Das, Y. Arya, H. Chhibber, Resonant interactions and chaotic excitation in nonlinear surface waves in dense plasma. IEEE Trans. Plasma Sci. 50, 1524–1535 (2022). https://doi.org/10.1109/TPS.2021.3109297

    Article  ADS  Google Scholar 

  34. C. Mukherjee, A. Sinha, Design of a comparator by using soliton in all optical communication system. Opt. Quant. Electron. 55(10), 906 (2023). https://doi.org/10.1007/s11082-023-05079-y

    Article  Google Scholar 

  35. C. Mukherjee, A. Sinha, A new theoretical approach to design HOSP-based subtractor. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00871-7

    Article  Google Scholar 

  36. V.C. Kuriakose, K. Porsezian, Elements of optical solitons: an overview. Resonance 15, 643–666 (2010). https://doi.org/10.1007/s12045-010-0048-y

    Article  Google Scholar 

  37. C. Rajowar, S. Mandal, A. Sinha, Some study on dark and bright optical solitons in a real system with periodically distributed dispersion and nonlinearity. Optoelectron. Lett. 18, 635–640 (2022). https://doi.org/10.1007/s11801-022-2075-9

    Article  ADS  Google Scholar 

  38. S. Mandal, A. Sinha, An analytical approach of soliton-based binary code suppression and recovery by proper using of electro-optic modulator and Michelson interferometer. J. Opt. 51, 500–504 (2022). https://doi.org/10.1007/s12596-021-00797-6

    Article  Google Scholar 

  39. C. Rajowar, A. Sinha, A new study on integrated chirped solitary waves in an asymmetrical optical fibre. Indian J. Phys. (2023). https://doi.org/10.1007/S12648-023-02643-W/METRICS

    Article  Google Scholar 

  40. C. Rajowar, A. Sinha, Soliton in an inhomogeneous highly dispersivemedia with cubic-quintic-septic-nonical nonlinearity law. J. Appl. Nonlinear Dyn. 12, 571–578 (2023). https://doi.org/10.5890/JAND.2023.09.010

    Article  MathSciNet  Google Scholar 

  41. P. Kuila, S. Mukhopadhyay, V.S. Mahavidyalaya, M.W. Manikpara, An analytical approach to realize remote controlled all-optical NAND logic using HOSP (In Proc. Int. conf. on Opt. and Photonics, CSIO, Chandigarh, India, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Ghosh, B.K. & Sinha, A. A review on construction of logic gates by using soliton in all-optical communication system. J Opt (2023). https://doi.org/10.1007/s12596-023-01534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01534-x

Keywords

Navigation