Log in

Mediation Analysis with Random Distribution as Mediator with an Application to iCOMPARE Trial

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Physical activity has long been shown to be associated with biological and physiological performance and risk of diseases. It is of great interest to assess whether the effect of an exposure or intervention on an outcome is mediated through physical activity measured by modern wearable devices such as actigraphy. However, existing methods for mediation analysis focus almost exclusively on mediation variable that is in the Euclidean space, which cannot be applied directly to physical activity measured by wearable devices. Such data is best summarized in the form of a random distribution. In this paper, we develop a structural equation model to the setting where a random distribution is treated as the mediator. We provide sufficient conditions for identifying the average causal effects of a distribution mediator and present methods for estimating the direct and mediating effects of a random distribution mediator on the outcome. We apply our method to analyze the iCOMPARE data set that compares flexible duty-hour policies and standard duty-hour policies on interns’ sleep related outcomes and to investigate the mediation effect of physical activity on the causal path between flexible duty-hour policies and sleep related outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gomez-Pinilla F, Hillman C (2013) The influence of exercise on cognitive abilities. Compr Physiol 3(1):403–428

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hillman C, Erickson K, Kramer A (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    Article  CAS  PubMed  Google Scholar 

  3. Ten Have TR, Joffe MM, Lynch KG, Brown GK, Maisto SA, Beck AT (2007) Causal mediation analyses with rank preserving models. Biometrics 63(3):926–934

    Article  MathSciNet  PubMed  Google Scholar 

  4. Albert JM (2008) Mediation analysis via potential outcomes models. Stat Med 27(8):1282–1304

    Article  MathSciNet  PubMed  Google Scholar 

  5. Jo B (2008) Causal inference in randomized experiments with mediational processes. Psychol Methods 13(4):314

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sobel ME (2008) Identification of causal parameters in randomized studies with mediating variables. J Educ Behav Stat 33(2):230–251

    Article  Google Scholar 

  7. Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40(3):879–891

    Article  PubMed  Google Scholar 

  8. VanderWeele T, Vansteelandt S (2014) Mediation analysis with multiple mediators. Epidemiol Methods 2(1):95–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sohn MB, Li H (2019) Compositional mediation analysis for microbiome studies. Ann Appl Stat 13(1):661–681

    Article  MathSciNet  Google Scholar 

  10. Lindquist MA (2012) Functional causal mediation analysis with an application to brain connectivity. J Am Stat Assoc 107(500):1297–1309

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng S, Rosenbaum S, Alberts SC, Archie EA, Li F (2021) Causal mediation analysis for sparse and irregular longitudinal data. Ann Appl Stat 15(2):747–767

    Article  MathSciNet  Google Scholar 

  12. Basner M, Asch DA, Shea JA, Bellini LM, Carlin M, Ecker AJ, Malone SK, Desai SV, Sternberg AL, Tonascia J (2019) Sleep and alertness in a duty-hour flexibility trial in internal medicine. N Engl J Med 380(10):915–923

    Article  PubMed  PubMed Central  Google Scholar 

  13. Basner M, Mollicone D, Dinges DF (2011) Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut 69(11–12):949–959

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Varma VR, Dey D, Leroux A, Di J, Urbanek J, **ao L, Zipunnikov V (2018) Total volume of physical activity: TAC, TLAC or TAC(λ). Prev Med 106:233–235

    Article  PubMed  Google Scholar 

  15. Faurholt-Jepsen M, Brage S, Vinberg M, Christensen EM, Knorr U, Jensen HM, Kessing LV (2012) Differences in psychomotor activity in patients suffering from unipolar and bipolar affective disorder in the remitted or mild/moderate depressive state. J Affect Disord 141(2–3):457–463

    Article  PubMed  Google Scholar 

  16. De Crescenzo F, Economou A, Sharpley AL, Gormez A, Quested DJ (2017) Actigraphic features of bipolar disorder: a systematic review and meta-analysis. Sleep Med Rev 33:58–69

    Article  PubMed  Google Scholar 

  17. Murray G, Gottlieb J, Hidalgo MP, Etain B, Ritter P, Skene DJ, Garbazza C, Bullock B, Merikangas K, Zipunnikov V, Shou H, Gonzalez R, Scott J, Geoffroy PA, Frey BN (2020) Measuring circadian function in bipolar disorders: empirical and conceptual review of physiological, actigraphic, and self-report approaches. Bipolar Disord 22:693–710

    Article  PubMed  Google Scholar 

  18. Keadle SK, Shiroma EJ, Freedson PS, Lee I-M (2014) Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study. BMC Public Health 14:1210

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schrack JA, Cooper R, Koster A, Shiroma EJ, Murabito JM, Rejeski WJ, Ferrucci L, Harris TB (2016) Assessing daily physical activity in older adults: unraveling the complexity of monitors, measures, and methods. J Gerontol Ser A 71(8):1039–1048

    Article  Google Scholar 

  20. Delicado P (2007) Functional \(k\)-sample problem when data are density functions. Comput Stat 22(3):391–410

    Article  MathSciNet  Google Scholar 

  21. Petersen A, Müller H-G (2016) Functional data analysis for density functions by transformation to a Hilbert space. Ann Stat 44(1):183–218

    Article  MathSciNet  Google Scholar 

  22. Talská R, Menafoglio A, Machalová J, Hron K, Fišerová E (2018) Compositional regression with functional response. Comput Stat Data Anal 123:66–85

    Article  MathSciNet  Google Scholar 

  23. Petersen A, Müller H-G (2019) Fréchet regression for random objects with Euclidean predictors. Ann Stat 47:691–719

    Article  Google Scholar 

  24. Lin Z, Kong D, Wang L (2023) Causal inference on distribution functions. J R Stat Soc Ser B 85(2):378–398

    Article  Google Scholar 

  25. Wang J-L, Chiou J-M, Müller H-G (2016) Functional data analysis. Annu Rev Stat Appl 3:257–295

    Article  Google Scholar 

  26. Han K, Müller H-G, Park BU (2020) Additive functional regression for densities as responses. J Am Stat Assoc 115(530):997–1010

    Article  MathSciNet  CAS  Google Scholar 

  27. Müller H-G, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33(2):774–805

    Article  MathSciNet  Google Scholar 

  28. Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D (2011) Penalized functional regression. J Comput Gr Stat 20:830–851

    Article  MathSciNet  Google Scholar 

  29. Goldsmith J, Zipunnikov V, Schrack J (2015) Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 71:344–353

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  30. Shrout PE, Bolger N (2002) Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 7(4):422

    Article  PubMed  Google Scholar 

  31. Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J, Barnett JB, Willett WC, Rimm EB, Bassett DR Jr (2017) Physical activity assessment with the ActiGraph GT3X and doubly labeled water. Med Sci Sports Exerc 49(9):1935

    Article  PubMed  PubMed Central  Google Scholar 

  32. Basner M, Dinges DF (2011) Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34(5):581–591

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li G, Shi P, Li G (1995) Global convergence rates of b-spline m-estimators in nonparametric regression. Stat Sin 5:303–318

    MathSciNet  Google Scholar 

Download references

Funding

The authors gratefully acknowledge supports from the NIH grants GM129781 and GM123056. The iCompare trial was supported by grants U01HL125388 and U01HL126088 from the National Heart, Lung, and Blood Institute and grants from the American Council for Graduate Medical Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Li.

Appendix

Appendix

1.1 Sensitivity Analysis in Sect. 3.3

Given \(\rho (t)\), we can estimate \(\beta _\rho ^{(s)}(t)\) as follows.

Step 1. Estimate \(\delta ^{(s)}(t,X_i)\), \(\alpha ^{(s)}(t,X_i)\), and \(\epsilon _i(t)\) in (5) by using the method in Sect. 3.1. Then \(\Sigma (u,v)=E(\epsilon _i(u)\epsilon _i(v))\) could be estimated.

Step 2. Given \(\beta _\rho ^{(s)}(t)\), let

$$\begin{aligned} {\tilde{Y}}_i\{Z_i,\varvec{Q}_i(Z_i)\} = Y_i(Z_i,\varvec{Q}_i(Z_i)) - \int \beta _\rho ^{(s)}(t)\left\{ \delta ^{(s)}(t,X_i)+\alpha ^{(s)}(t,X_i)Z_i\right\} dt. \end{aligned}$$

Regress \({\tilde{Y}}_i\{Z_i,\varvec{Q}_i(Z_i)\}\) on \((X_i^T,Z_iX_i^T)\) and obtain the estimate of \(U_i={\tilde{Y}}_i\{Z_i,\varvec{Q}_i(Z_i)\}-X_i^T\xi ^{(s)}-Z_iX_i^T\gamma ^{(s)}\).

Step 3. Obtain \(\eta _i=U_i-\int \beta _\rho ^{(s)}(t)\epsilon _i(t)dt\) and \(\sigma _1^2=var(\eta _i)\).

Step 4. Estimate \(\beta _\rho ^{(s)}(t)\) by plugging \(cov\{U_i,\epsilon _i(t)\}\), \(\Sigma (u,v)\), \(\sigma _1\), and \(\rho (t)\) into (12).

Step 5. Repeat Steps 2–4 until convergence.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Basner, M., Jones, C.W. et al. Mediation Analysis with Random Distribution as Mediator with an Application to iCOMPARE Trial. Stat Biosci 16, 107–128 (2024). https://doi.org/10.1007/s12561-023-09383-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-023-09383-9

Keywords

Navigation