Log in

Fabrication and Characterization of Wire Arc Additively Manufactured Ferritic-Austenitic Bimetallic Structure

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Bimetallic parts are used in many industrial fields, such as pressure vessels, shipbuilding, aerospace, and automotive industries. Conventional bimetallic part production involves a combination of two different metals that are joined using welding and brazing operations. Additive manufacturing technologies offer a cost-effective and innovative manufacturing alternative for complex 3D-shaped parts that can have multi-material designs for better structural performance. However, the structural performance of bimetallic components is primarily influenced by the combination of the employed materials, the interface’s morphology, and interface bonding strength. This work investigated the microstructure and mechanical behavior of a bimetallic thick-walled structure as “WAAM Wall” fabricated by depositing low-alloyed metal-cored wire on the top of 316L stainless steel by robotic wire arc additive manufacturing (WAAM) process. The results showed that both low-carbon steel and austenitic stainless steel SS316L wires are suitable for manufacturing defect-free bimetallic WAAM components, which may widen the design flexibility to manufacture bi-metallic and or functionally graded WAAM components. However, detailed microstructural characterization indicated that martensitic microstructure containing chrome carbides was developed at the bimetallic interface due to an increase in Ni and Cr contents, resulting in a sudden increase of 95% in hardness and a sharp decrease of 70% in fracture toughness at the interface region compared to the SS 316L side. This high-hardness region also resulted in an increase of about 113% and 86% for yield and tensile strengths and a sharp reduction of 69% for elongation values in horizontal interface specimens compared to vertical interface specimens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.U. Ahsan, X. Fan, G. Seo, C. Ji, M. Noakes, A. Nycz, P. Liaw, D.B. Kim, J. Mater. Sci. Technol 74, 176–188 (2021). https://doi.org/10.1016/j.jmst.2020.10.001

    Article  CAS  Google Scholar 

  2. B. Wu, Z. Qiu, Z. Pan, K. Carpenter, T. Wang, D. Ding, S.V. Duin, H. Li, J. Mater. Sci. Technol 52, 226–234 (2020). https://doi.org/10.1016/j.jmst.2020.04.019

    Article  CAS  Google Scholar 

  3. M.D.B. Kumar, M. Manikandan, Met. Mater. Int. 28, 54–111 (2022). https://doi.org/10.1007/s12540-021-01015-5

    Article  Google Scholar 

  4. F. Martina, J. Ding, S. Williams, A. Caballero, G. Pardal, L. Quintino, Addit. Manuf. 25, 545–550 (2019). https://doi.org/10.1016/j.addma.2018.11.022

    Article  CAS  Google Scholar 

  5. W. **, C. Zhang, S. **, Y. Tian, D. Wellmann, W. Liu, Appl. Sci. 10(5), 1563 (2020). https://doi.org/10.3390/app10051563

    Article  CAS  Google Scholar 

  6. A. Queguineur, G. Ruckert, F. Cortial, J.Y. Hascoet, Weld. World 62(2), 259–266 (2017). https://doi.org/10.1007/s40194-017-0536-8

    Article  CAS  Google Scholar 

  7. A. Kumar, K. Maji, J. Mater. Eng. Perform. 30(7), 5413–5425 (2021). https://doi.org/10.1007/s11665-021-05819-9

    Article  CAS  Google Scholar 

  8. S. Dilibal, S. Nohut, C. Kurtoglu, J. Owusu-Danquah, S. Dilibal, S. Nohut, C. Kurtoglu, J. Owusu-Danquah. Data-Driven Generative Design Integrated with Hybrid Additive Subtractive Manufacturing (HASM) for Smart Cities. Springer, 205–228. (2021). https://doi.org/10.1007/978-3-030-72139-8_10

  9. L. Wang, D. Chen, Z. Gao, F. Lyu, X. Zhan, Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01474-y

    Article  Google Scholar 

  10. M.D.B. Kumar, M. Manikandan, Met. Mater. Int. 28, 3033–3056 (2022). https://doi.org/10.1007/s12540-022-01185-w

    Article  CAS  Google Scholar 

  11. R. Pramod, S.M. Kumar, A.R. Kannan, N.S. Shanmugam, R. Tangestani, Met. Mater. Int. 28, 307–321 (2022). https://doi.org/10.1007/s12540-021-01026-2

    Article  CAS  Google Scholar 

  12. G. **an, M. Cheepu, J. Yu, S.M. Cho, J. Yeom, Y.S. Choi, N. Kang, Met. Mater. Int. 29, 501–514 (2023). https://doi.org/10.1007/s12540-022-01272-y

    Article  Google Scholar 

  13. Y. **ong, D. Wen, Z. Zheng, C. Sun, J. **e, J. Li, Met. Mater. Int. 29, 3009–3023 (2023). https://doi.org/10.1007/s12540-023-01428-4

    Article  CAS  Google Scholar 

  14. X. Lu, Y.F. Zhou, X.L. **ng, L.Y. Shao, Q.X. Yang, S.Y. Gao, Int. J. Adv. Manuf. Technol. 93, 2145–2154 (2017). https://doi.org/10.1007/s00170-017-0636-z

    Article  Google Scholar 

  15. A. Bandyopadhyay, Y. Zhang, B. Onuike, Virtual Phys. Prototyp. 17(2), 256–294 (2022). https://doi.org/10.1080/17452759.2022.2040738

    Article  Google Scholar 

  16. J. Zhang, C. Li, L. Ba, X. Di, Met. Mater. Int. 29, 767–776 (2023). https://doi.org/10.1007/s12540-022-01247-z

    Article  CAS  Google Scholar 

  17. H. Tianying, Y. Shengfu, R. Yu, B. Zheng, Int. J. Adv. Manuf. Technol. 119, 6601–6612 (2022). https://doi.org/10.1007/s00170-021-08477-2

    Article  Google Scholar 

  18. T.A. Rodrigues, N. Bairrao, F.W.C. Farias, A. Shamsolhodaei, J. Shen, N. Zhou, E. Maawad, N. Schell, T.G. Santos, J.P. Oliveira, Mater. Des 213, 110270 (2022). https://doi.org/10.1016/j.matdes.2021.110270

    Article  CAS  Google Scholar 

  19. S. Singh, A.N. **oop, I.A. Palani, C.P. Paul, K.P. Tomar, K.G. Prashanth, Mater. Lett. 303, 130499 (2021). https://doi.org/10.1016/j.matlet.2021.130499

    Article  CAS  Google Scholar 

  20. A. Motwani, A. Kumar, Y. Puri, N.K. Lautre, Weld. World 67, 967–980 (2023). https://doi.org/10.1007/s40194-022-01403-4

    Article  CAS  Google Scholar 

  21. T. Abe, H. Sasahara, Precis. Eng. 45, 387–395 (2016). https://doi.org/10.1016/j.precisioneng.2016.03.016

    Article  Google Scholar 

  22. A.R. Kannan, S.M. Kumar, N.P. Kumar, N.S. Shanmugam, A.S. Vishnu, Y. Palguna, Mater. Lett. 274, 127968 (2020). https://doi.org/10.1016/j.matlet.2020.127968

    Article  CAS  Google Scholar 

  23. R. Sasikumar, A.R. Kannan, S.M. Kumar, R. Pramod, N.P. Kumar, N.S. Shanmugam, Y. Palguna, S. Sivankalai, CIRP J. Manuf. Sci. Technol. 38, 230–242 (2022). https://doi.org/10.1016/j.cirpj.2022.05.005

    Article  Google Scholar 

  24. R.U. Ahsan, A.N.M. Tanvir, T. Ross, A. Elsawy, M. Oh, D.B. Kim, Rapid Prototyp. J. 26(3), 519–530 (2020). https://doi.org/10.1108/RPJ-09-2018-0235

    Article  Google Scholar 

  25. L.P. Raut, R.V. Taiwade, J. Mater. Eng. Perform. 31, 8531–8541 (2022). https://doi.org/10.1007/s11665-022-06856-8

    Article  CAS  Google Scholar 

  26. V. Uralde, A. Suarez, E. Aldalur, F. Veiga, T. Ballesteros, Materials 15(17), 5828 (2021). https://doi.org/10.3390/ma15175828

    Article  CAS  Google Scholar 

  27. Y. Chen, X. Zuo, W. Zhang, Z. Hao, Y. Li, Z. Luo, S. Ao, Mater. Sci. Eng. A 856, 143984 (2022). https://doi.org/10.1016/j.msea.2022.143984

    Article  CAS  Google Scholar 

  28. R.U. Md, A.N.M. Ahsan, G. Tanvir, B. Seo, W. Bates, C. Hawkins, P.K. Lee, M. Liaw, A. Noakes, D.B. Nycz, Kim, Addit. Manuf. 32, 101036 (2020). https://doi.org/10.1016/j.addma.2020.101036

    Article  CAS  Google Scholar 

  29. G. Çam, M. Koçak, Progress in joining of advanced materials. Int. Mater. Rev. 43(1), 1–44 (1998). https://doi.org/10.1179/imr.1998.43.1.1

    Article  Google Scholar 

  30. J. Besson, Y. Madi, A. Motarjemi, M. Koçak, G. Martin, P. Hornet, Mater. Sci. Eng. A 397, 84–91 (2005). https://doi.org/10.1016/j.msea.2005.01.056

    Article  CAS  Google Scholar 

  31. U. Gürol, B. Turgut, N. Güleçyüz, S. Dilibal, M. Koçak, Int. J. 3D Print. Technol. Digit. Ind. 5(3), 721–729 (2021). https://doi.org/10.46519/ij3dptdi.1033374

    Article  Google Scholar 

  32. A.K. Motarjemi, M. Koçak, V. Ventzke, Mechanical and fracture characterization of a bi-material steel plate. Int. J. Press. Vessels Pip. 79, 181–191 (2002). https://doi.org/10.1016/S0308-0161(02)00012-1

    Article  Google Scholar 

  33. K. Qi, R. Li, Z. Hu, X. Bi, T. Li, H. Yue, B. Zhang, J. Mater. Eng. Perform. 31, 4631–4641 (2022). https://doi.org/10.1007/s11665-022-06587-w

    Article  CAS  Google Scholar 

  34. Z. Hu, X. Qin, Y. Li, J. Yuan, Q. Wu, J. Intell. Manuf. 31, 1133–1147 (2020). https://doi.org/10.1007/s10845-019-01501-z

    Article  Google Scholar 

  35. U. Gürol, M. Tümer, S. Dilibal, Trans. Indian Inst. Met. 76, 1371–1379 (2023). https://doi.org/10.1007/s12666-022-02797-x

    Article  CAS  Google Scholar 

  36. U. Gürol, S. Dilibal, B. Turgut, M. Koçak, Mater. Test. 64(6), 755–767 (2022). https://doi.org/10.1515/mt-2021-2155

    Article  CAS  Google Scholar 

  37. B. Turgut, U. Gürol, R. Önler, Int. J. Adv. Manuf. Technol. 126, 5277–5288 (2023). https://doi.org/10.1007/s00170-023-11481-3

    Article  Google Scholar 

  38. J. Vora, R. Pandey, P. Dodiya, V. Patel, S. Khanna, V. Vaghasia, R. Chaudhari, Materials 16, 5147 (2023). https://doi.org/10.3390/ma16145147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. Silwal, N. Pudasaini, S. Roy, A.B. Murphy, A. Nycz, M.W. Noakes, Appl. Sci. 12, 3679 (2022). https://doi.org/10.3390/app12073679

    Article  CAS  Google Scholar 

  40. J. **ong, Y. Li, Z. Yin, H. Chen, Chin. J. Mech. Eng. 31, 74 (2018). https://doi.org/10.1186/s10033-018-0276-8

    Article  Google Scholar 

  41. K. Dağyıkan, U. Gürol, M. Koçak, Weld. World 67, 1009–1019 (2023). https://doi.org/10.1007/s40194-022-01424-z

    Article  Google Scholar 

  42. T.A. Rodrigues, J.D. Escobar, J. Shen, V.R. Duarte, G.G. Ribamar, J.A. Avila, E. Maawad, N. Schell, T.G. Santos, J.P. Oliveira, Addit. Manuf. 48, 102428 (2021). https://doi.org/10.1016/j.addma.2021.102428

    Article  CAS  Google Scholar 

  43. U. Gürol, Int. J. Met. 17, 1021–1033 (2023). https://doi.org/10.1007/s40962-022-00834-5

    Article  CAS  Google Scholar 

  44. V.T. Le, D.S. Mai, T.K. Doan, H. Paris, Eng. Sci. Technol. Int. J. 24(4), 1015–1026 (2021). https://doi.org/10.1016/j.jestch.2021.01.009

    Article  Google Scholar 

  45. Y. Li, Y. Luo, J. Li, D. Song, B. Xu, X. Chen, J. Nucl. Mater. 550, 152933 (2021). https://doi.org/10.1016/j.jnucmat.2021.152933

    Article  CAS  Google Scholar 

  46. R. Yılmaz, M. Tumer, Int. J. Adv. Manuf. Technol. 67, 1433–1447 (2013). https://doi.org/10.1007/s00170-012-4579-0

    Article  Google Scholar 

  47. H. Ban, R. Bai, K.F. Chung, Y. Bai, Fire Saf. J. 112, 102964 (2020). https://doi.org/10.1016/j.firesaf.2020.102964

    Article  CAS  Google Scholar 

  48. U. Gürol, Y. Altınay, A. Günen, Ã.S. Bölükbaşı, M. Koçak, G. Çam, Surf. Coat. Technol. 468, 129742 (2023). https://doi.org/10.1016/j.surfcoat.2023.129742

    Article  CAS  Google Scholar 

  49. Y. Koli, S. Aravindan, P.V. Rao, Mater. Charact. 194, 112363 (2022). https://doi.org/10.1016/j.matchar.2022.112363

    Article  CAS  Google Scholar 

  50. J.D. Farren, J.N. Dupont, F.F. Noecker, Weld. J. 86(3), 55-s–61-s (2007)

  51. M. Rafieazad, M. Ghaffari, A.V. Nemani, A. Nasiri, Int. J. Adv. Manuf. Technol. 105, 2121 (2019). https://doi.org/10.1007/s00170-019-04393-8

    Article  Google Scholar 

  52. K.H. Schwalbe, M. Koçak, Performance of strength mis-matched welded or bonded joints (GKSS Research Center, Geesthacht, 1997)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank members of the Gedik Test Center, Istanbul-Turkey for their technical support during the testing and characterization of the WAAM components.

Funding

This study has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the University-Industry Cooperation Support Program scope with project number 5220023.

Author information

Authors and Affiliations

Authors

Contributions

UG conceptualization, material preparation, data collection, writing (original draft, review, and editing). BT conceptualization, material preparation, data collection, writing (original draft). HK material preparation and data collection. SD conceptualization, writing (original draft, review, and editing). MK conceptualization, writing (review and editing).

Corresponding author

Correspondence to Uğur Gürol.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürol, U., Turgut, B., Kumek, H. et al. Fabrication and Characterization of Wire Arc Additively Manufactured Ferritic-Austenitic Bimetallic Structure. Met. Mater. Int. 30, 1342–1355 (2024). https://doi.org/10.1007/s12540-023-01568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01568-7

Keywords

Navigation