Log in

Integration of GIS and WEAP models for groundwater resource management in arid regions: case of the Djeffara-Medenine shallow aquifer (Southeastern Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The humans’ activities development exerts increasing constraints on groundwater resources in arid and semi-arid regions. The Djeffara-Medenine shallow aquifer (Southeastern Tunisia), subject of this study, is threatened by a groundwater overexploitation. Thus, the search of water resource management has become a necessity. This study aims to develop a decision support for modeling water resources, to assess the following: (i) the groundwater spatial management by overlaying the groundwater quality and vulnerability maps of the Maritime Djeffara. GIS tools were used to generate various spatially analyzed thematic layers and their integration to produce the final map; and (ii) the quantity groundwater management by determining the groundwater reserve and water demands balance and to investigate the future situation of water resources using Water Evaluation and Planning (WEAP21) model. As results, the thematic method shows a groundwater spatial management by classifying the studied area into three zones: good, moderate, and unsuitable waters for human purposes. The good waters were localized at Zone 1. Moreover, for WEAP21 model, three scenarios were created: “Irrigation water needs,” “Population growth rate,” and “industry growth rate.” The obtained results show a water demand increase induced by the populations and their activities increase, WEAP21 model estimates a value equal to 19.44 Mm3, 11.96 Mm3, 12.08 Mm3, and 11.95 Mm3 in 2065 for the “Irrigation water needs,” “industry growth rate,” “population growth rate,” and reference scenario, respectively. Since the groundwater of this aquifer was almost used for agriculture purposes, the most important results were showed by the “Irrigation water needs” scenario. This scenario results show a water reserve decrease going from 10,760 Mm3 (2015) to reach 10,324.77 Mm3 (2065). This decline is due to the intensive exploitation and the limited recharge of this aquifer. This state could be ameliorated if a demand management policy will be applied, in order to establish a balance state between supply and demand using several tools of water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Agarwadkar YY (2005) Salinity map** in coastal area using GIS and remote sensing. ITC, Enschede

  • Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area Northwest of Iran. J Environ Prot 1(01):30

    Article  Google Scholar 

  • Akivaga ME (2010) Simulation and scenario analysis of water resources management in Perkerra catchment using weap model (Doctoral dissertation, Moi Univesity)

  • Albinet M, Margat J (1970) Cartographie de la vulnérabilité la pollution des nappes d’eau souterraine [Map** of groundwater vulnerability to contamination]. Bull BRGM 2(4):13–22

    Google Scholar 

  • Allouche N, Maanan M, Gontara M, Rollo N, Jmal I, Bouri S (2017) A global risk approach to assessing groundwater vulnerability. Environ Model Softw 88:168–182

    Article  Google Scholar 

  • Amin A, Iqbal J, Asghar A, Ribbe L (2018) Analysis of current and future water demands in the upper Indus basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model. Water 10(5):537

    Article  Google Scholar 

  • Ameur M, Aouiti S, Hamzaoui-Azaza F, Cheikha LB, Gueddari M (2021) Vulnerability assessment, transport modeling and simulation of nitrate in groundwater using SI method and modflow-MT3DMS software: case of Sminja aquifer Tunisia. Environ Earth Sci 80(6):1–16

    Article  Google Scholar 

  • Anane M, Abidi B, Lachaal F, Limam A, Jellali S (2013) GIS-based DRASTIC, pesticide DRASTIC and the susceptibility index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer Tunisia. Hydrogeol J 21(3):715–731

    Article  Google Scholar 

  • Andersson J, Pechlivanidis I, Gustafsson D, Donnelly C, Arheimer B (2015) Key factors for improving large-scale hydrological model performance. European Water 49:77–88

    Google Scholar 

  • Andrianarivony A (2016) Modelisation hydrologique par WEAP21 pour un gestion integree des ressources en eau: cas du bassin versant de la Lokoho (Nord-est de Madagascar) (Doctoral dissertation, Masters Thesis, Universite d'Antananarivo)

  • Ashofteh PS, Rajaee T, Golfam P (2017) Assessment of water resources development projects under conditions of climate change using efficiency indexes (EIs). Water Resour Manage 31(12):3723–3744

    Article  Google Scholar 

  • Ayed B, Jmal I, Sahal S, Bouri S (2017a) Assessment of groundwater vulnerability using a specific vulnerability method: case of Maritime Djeffara shallow aquifer (Southeastern Tunisia). Arab J Geosci 10(12):262

    Article  Google Scholar 

  • Ayed B, Jmal I, Sahal S, Mokadem N, Saidi S, Boughariou E, Bouri S (2017b) Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environ Earth Sci 76(24):821

    Article  Google Scholar 

  • Ayed B, Jmal I, Sahal S, Bouri S (2018) The seawater intrusion assessment in coastal aquifers using GALDIT method and groundwater quality index: the Djeffara of Medenine coastal aquifer (Southeastern Tunisia). Arab J Geosci 11(20):609

    Article  Google Scholar 

  • Aydi W, Saidi S, Chalbaoui M, Chaibi S, Ben Dhia H (2013) Evaluation of the groundwater vulnerability to pollution using an intrinsic and a specific method in a GIS environment: application to the Plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38(7):1815–1831

    Article  Google Scholar 

  • Birhanu B, Kebede S, Masetti M, Ayenew T (2018) WEAP-MODFLOW dynamic modeling approach to evaluate surface water and groundwater supply sources of Addis Ababa city. Acque Sotterranee-Ital J Groundw 7(2)

  • Boudjebieur E, Ghrieb L, Maoui A, Chaffai H, Chini ZL (2021) Long-term water demand assessment using WEAP 21: case of the Guelma region, Middle Seybouse (Northeast Algeria). Geographia Technica, 16

  • Bouznad IE, Zouini D, Nouiri I, Khelfaoui F (2016) Essay of modelling water resources management of the Oued Righ watershed (Algeria) using the WEAP decision support system. Synthèse: Revue des Sciences et de la Technologie 33(1):56–71

  • Brindha KLE (2015) Cross comparison of five popular groundwater pollution vulnerability index approaches. J Hydrol 524:597–613. https://doi.org/10.1016/j.jhydrol.2015.03.003

    Article  Google Scholar 

  • Cai X, Kam SP, Yen BT, Sood A, Chu Thai H (2014) Cawat—A catchment water allocation tool for integrated irrigation and aquaculture development in small watersheds. Available online: https://academicworks.cuny.edu/cc_conf_hic/381/ (accessed on 26 Mar 2018)

  • Chachadi AG, Lobo-Ferreira JP (2001) Sea water intrusion vulnerability map** of aquifers using the GALDIT method. COASTIN Newsl. 4:7e9

    Google Scholar 

  • Chachadi AG (2005) Seawater intrusion map** using modified GALDIT indicator model-case study in Goa. Jalvigyan Sameeksha 20:29–45

    Google Scholar 

  • Chreok S, Song L, Eberbach P, Hornbuckle J (2017) Application of the FAO model AquaCrop for estimating crop yield under conditions of soil water deficit stress in the Cambodian lowlands. In " Doing More with Less", Proceedings of the 18th Australian Agronomy Conference 2017, Ballarat, Victoria, Australia, 24–28 September 2017 (pp. 1–4). Australian Society of Agronomy Inc

  • Dhami BS, Pandey A (2013) Comparative review of recently developed hydrologic models. J Indian Water Resour Soc 33(3):34–41

    Google Scholar 

  • Delgado C, Pacheco J, Cabrera A, Batllori E, Orellana R, Bautista F (2010) Quality of groundwater for irrigation in tropical karst environment: the case of Yucatan. Mexico Agric Water Manag 97(10):1423–1433

    Article  Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. Department of Water Science and Engineering, University of California, Davis

  • Dovie DBK, Kasei RA (2018) Hydro-climatic stress, shallow groundwater wells and co** in Ghana’s White Volta basin. Sci Total Environ 636:1268–1278

    Article  Google Scholar 

  • Gao J, Christensen P, Li W (2017) Application of the WEAP model in strategic environmental assessment: experiences from a case study in an arid/semi-arid area in China. J Environ Manage 198:363–371

    Article  Google Scholar 

  • Gorgij AD, Moghaddam AA (2016) Vulnerability assessment of saltwater intrusion using simplified GAPDIT method: a case study of Azarshahr Plain Aquifer, East Azerbaijan. Iran Arab J Geosci 9(2):106

    Article  Google Scholar 

  • Hamlat A, Errih M, Guidoum A (2013) Simulation of water resources management scenarios in western Algeria watersheds using WEAP model. Arab J Geosci 6(7):2225–2236

    Article  Google Scholar 

  • Hamdane A (2014) La gestion des ressources en eau souterraines (nappes et aquifères) comme biens communs: Cas de la Tunisie. Synthese regionale sur l’approche economique de la gestion de la demande en eau en Mediterranee, SCET-Tunisie, p 4

  • Hanemann WM (2006) The economic conception of water. Water Crisis: Myth or Reality 61:74–76

  • Harma KJ, Johnson MS, Cohen SJ (2012) Future water supply and demand in the Okanagan basin, British columbia: a scenario-based analysis of multiple, interacting stressors. Water Resour Manag 26:667–689

    Article  Google Scholar 

  • Höllermann B, Giertz S, Diekkrüger B (2010) Benin 2025—balancing future water availability and demand using the WEAP ‘Water Evaluation and Planning’ System. Water Resour Manage 24(13):3591–3613

    Article  Google Scholar 

  • Idowu TE, Jepkosgei C, Nyadawa M, Korowe MO, Waswa RM, Lasisi KH, et al (2022) Integrated seawater intrusion and groundwater quality assessment of a coastal aquifer: GALDIT, geospatial and analytical approaches. Environ Sci Pollut Res 1–22

  • Kumar P, Masago Y, Mishra BK, Fukushi K (2018) Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundw Sustain Dev 6:227–234

    Article  Google Scholar 

  • Kim IH, Chung IM, Chang SW (2021) Development of seawater intrusion vulnerability assessment for averaged seasonality of using modified GALDIT method. Water 13(13) 1820

  • Lévite H, Sally H, Cour J (2003) Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model. Physics and Chemistry of the Earth, Parts a/b/c 28(20–27):779–786

    Article  Google Scholar 

  • Lobo Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 1 application to the portuguese aquifer of Monte Gordo. Fouth Inter-Celtic Colloquium on Hydrogeology and Management of Water Resources, Lisbon

    Google Scholar 

  • Mahesha A, Vyshali U, Lathashri A, Ramesh H (2011) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion. J Hydrol Eng ASCE 17:933–943

    Article  Google Scholar 

  • Matzeu A, Secci R, Uras G (2017) Methodological approach to assessment of groundwater contamination risk in an agricultural area. Agric Water Manag 184:46–58

    Article  Google Scholar 

  • Medenine Atlas (2012) Visited in 2017 http://www.mehat.gov.tn/fileadmin/user_upload/Amenagement_Territoire/AtlasMedenineAr.pdf

  • Medenine Atlas (2016) Gouvernorat de Médenine en chiffre. Visited in 2017 http://www.onagri.nat.tn/uploads/statistiques/2016/mednine2016.pdf

  • Narasimha G, Sridevi A, Buddolla V, Subhosh CM, Rajasekhar RB (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol 5(5):472–476

    Google Scholar 

  • Ncibi K, Gaaloul N, Gasmi A (2016) Contribution de l’analyse multivariée et des SIG pour la caractérisation hydrochimique de la nappe phréatique de la plaine de Sidi Bouzid (Tunisie centrale)/ [Contribution of the multivariate analysis and the GIS for Hydrochemical characterization of phreatic aquifer to the plain of Sidi Bouzid (Central Tunisia)]. Int J Innov Appl Stud 15(3):667

    Google Scholar 

  • Ncibi K, Hadji R, Hamdi M, Mokadem N, Abbes M, Khelifi F, Hamed Y (2020) Application of the analytic hierarchy process to weight the criteria used to determine the water quality index of groundwater in the northeastern basin of the Sidi Bouzid region, Central Tunisia. Euro-Mediterr J Environ Integr 5(1):1–15

    Article  Google Scholar 

  • NIS (National Institute of Statistic) (2016) Médenine à travers le Recensement Général de la Population et de l’Habitat 2014. http://www.ins.tn/fr/publication/m%C3%A9denine-travers-le-recensement-g%C3%A9n%C3%A9ral-de-lapopulation-et-de-l%E2%80%99habitat-2014

  • Nouiri I, Jeridi A, Abdelmelek MB, Chalghoumi N, Ali HB (2015) Modélisation de la gestion des ressources en eau de surface du bassin Transfrontalier Tuniso-Algérien de la Medjerda sous l’environnement de calcul WEAP

  • Perera B, James B, Kularathna M (2005) Computer software tool realm for sustainable water allocation and management. J. Environ. Manag 77, 291–300. [CrossRef] [PubMed]

  • Pink RM (2016) Water rights in Southeast Asia and India. New York, NY, USA, Palgrave Macmillan, pp 1–14

  • Rakotondrabe F (2007) Etude de la vulnérabilité des ressources en eau aux changements climatiques, modélisation par le logiciel WEAP 21: cas du bassin versant de Morondava (Sud-ouest de Madagascar). Antananarivo, Antananarivo

  • RCAD of Medenine (Regional Commissary for Agricultural Development of Medenine) (2017) Annual repports of groundwater storage

  • Recinos N, Kallioras A, Pliakas F, Schuth C (2015) Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ Earth Sci 73:1017–1032. https://doi.org/10.1007/s12665-014-3452-x

    Article  Google Scholar 

  • Ribeiro L (2000) IS: um novo índice de susceptibilidade de aquíferos á contaminaçăo agrícola [SI: a new index of aquifer susceptibility to agricultural pollution]. Internal report, ERSHA/CVRM, Instituto Superior Técnico, Lisbon, p 12

    Google Scholar 

  • Ribeiro L, Serra E, Paralta E, Nascimento J (2003) Nitrate pollution in hardrock formations: vulnerability and risk evaluation by geomathematical methods in Serpa-Brinches aquifer (South Portugal). In: IAH International Conference on Groundwater in Fractured Rocks, Prague, Czech Republic, IHP-VI, Series on Groundwater, vol 7, pp 377–378

  • Ribeiro L, Rueda OM, Betancur T (2011) Métodos geoestadísticos e índice de susceptibilidad para evaluar la vulnerabilidad de la contaminación de acuíferos, Congreso Colombiano de Hidrogeología, p 6

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. LWW 78(2):154 

  • SEI (2001) WEAP (Water Evaluation and Planning): user guide for WEAP21. Stockholm Environment Institute, Boston USA. Available: www.seib.org/weap/

  • Saidi S, Bouri S, Dhia HB (2013) Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling: application to theMahdia–Ksour Essaf aquifer Tunisia. Environ Earth Sci 70(4):1551–1568

    Article  Google Scholar 

  • Shetkar RV, Mahesha A (2010) Tropical, seasonal river basin development: hydrogeological analysis. J Hydrol Eng ASCE 16:280–291

    Article  Google Scholar 

  • Shrestha S, Semkuyu DJ, Pandey VP (2016) Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley. Nepal Sci Total Environ 556:23–35

    Article  Google Scholar 

  • Stiger TY, Ribeiro L, DillAMM C (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99

    Article  Google Scholar 

  • Szabolcs I, Darab K (1964) Radio-Active technique for examining the improving effect of CaCO3 on alkali (Szik) soils. Acta Agron Hungary 13(1):93–101

  • Vrba J, Zaporozec A (1994) Guidebook on map** groundwater vulnerability. Heise

  • Yates David, Sieber Jack, Purkey David, Huber-Lee Annette (2005) WEAP21da demand, priority, and preference-driven water planning model. Water Int 30(4):487e500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachaer Ayed.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Fethi Lachaal

This article is part of the Topical Collection on Water Quality, Global Changes and Groundwater Responses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, B., Khlif, N., Jmal, I. et al. Integration of GIS and WEAP models for groundwater resource management in arid regions: case of the Djeffara-Medenine shallow aquifer (Southeastern Tunisia). Arab J Geosci 15, 994 (2022). https://doi.org/10.1007/s12517-022-10277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10277-1

Keywords

Navigation