Log in

Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Worldwide, groundwater resources have been considered as the main sources of drinking, domestic uses, industrial and agriculture water demands, especially in arid and semiarid regions. Accordingly, the monitoring of the groundwater quality based on different tools and methods becomes a necessity. The aim of this study was to apply several approaches to assess the water quality and to define the main hydrochemical process which affect groundwater of the Maritime Djeffara shallow aquifer. In addition to the hydrochemical approach, two multivariate statistical analyses, hierarchical clusters analysis (HCA) and principal component analysis (PCA), were carried out to identify the natural and the anthropogenic processes affecting groundwater chemistry. Hydrochemical approach, based on 47 analyzed groundwater samples, shows that most of samples present a sulfate to mixed chloride, with sodi-potassic tendency facies. According to their chemically composition, the HCA revealed three different groups (C1, C2 and C3) according to their electrical conductivity (EC) values: C1 (average EC = 4500 µS/cm), C2 (average EC = 7040 µS/cm) and C3 (average EC = 9767 µS/cm). Furthermore, PCA results show two principal factors account 84.05% of the total variance: (1) F1 represents the natural component, and (2) F2 symbolizes the anthropic component. Moreover, the groundwater quality map of the Maritime Djeffara shows three categories: suitable, doubtful and unsuitable water for irrigation. These different results should be taken to protect water resources in arid and semiarid regions, especially at the alluvial coastal regions. Also, they help to make a suitable planning to manage and protect the groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ayed et al. (2017)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, Northwest of Iran. J Environ Prot 1(01):30

    Article  Google Scholar 

  • Agoubi B (2012) Caractérisation hydrogéologique et géochimique du système aquifère de la Jeffara maritime: Apport des approches géostatistiques (Hydrogeological and geochemistry characterization of the Maritime Jeffara aquifer system). Faculty of sciences of Sfax

  • Agoubi B, Kharroubi A, Abichou T, Abida H (2013) Hydrochemical and geoelectrical investigation of Marine Jeffara Aquifer, southeastern Tunisia. Appl Water Sci 3(2):415–429

    Article  Google Scholar 

  • Agoubi B, Kharroubi A, Abida H (2014) Geochemical assessment of environmental impact on groundwater quality in coastal arid area, south eastern Tunisia. J Environ Sci Eng Technol 2:35–46

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A. A. Balkema, Rotterdam

    Book  Google Scholar 

  • Ayed B, Jmal I, Sahal S, Bouri S (2017) Assessment of groundwater vulnerability using a specific vulnerability method: case of Maritime Djeffara shallow aquifer (Southeastern Tunisia). Arab J Geosci 10:262. https://doi.org/10.1007/s12517-017-3035-8

    Article  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture FAO irrigation and drain, no. 29

  • Baig JA, Kazi TG, Shah AQ, Kandhro GA, Afridi HI, Arain MB et al (2010) Speciation and evaluation of arsenic in surface water and groundwater samples: a multivariate case study. Ecotoxicol Environ Saf 73:914–923

    Article  Google Scholar 

  • Bayo J, López-Castellanos J (2016) Principal factor and hierarchical cluster analyses for the performance assessment of an urban wastewater treatment plant in the Southeast of Spain. Chemosphere 155:152–162

    Article  Google Scholar 

  • Bencer S, Boudoukha A, Mouni L (2016) Multivariate statistical analysis of the groundwater of Ain Djacer area (Eastern of Algeria). Arab J Geosci 9(4):1–10

    Article  Google Scholar 

  • Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson JE, Singh N, Brokking Balfors B (2012) Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. J Afr Earth Sci 66:72–84

    Article  Google Scholar 

  • Bošnjak MU, Capak K, Jazbec A, Casiot C, Sipos L, Poljak V, Dadić Ž (2012) Hydrochemical characterization of arsenic contaminated alluvial aquifers in Eastern Croatia using multivariate statistical techniques and arsenic risk assessment. Sci Total Environ 420:100–110

    Article  Google Scholar 

  • Bouaziz S (1995) Etude de la tectonique cassante dans la plate-forme et l’Atlas Sahariens (Tunisie méridionale): evolution des paléochamps de contraintes et implications géodynamiques. Unpublished thesis ès-Sciences, Université Tunis II

  • Bouaziz S, Jedoui Y, Barrier É, Angelier J (2003) Néotectonique affectant les dépôts marins tyrrhéniens du littoral sud-est tunisien: implications pour les variations du niveau marin. Comptes Rendus Geosci 335(2):247–254

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  • Colombani N, Cuoco E, Mastrocicco M (2017) Origin and pattern of salinization in the Holocene aquifer of the southern Po Delta (NE Italy). J Geochem Explor 175:130–137

    Article  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, New York, pp 428–433 (6.1)

    Google Scholar 

  • Costa JL, Aparicio VC (2015) Quality assessment of irrigation water under a combination of rain and irrigation. Agric Water Manag 159:299–306

    Article  Google Scholar 

  • Dagnellie P (1992) Statistique théorique et appliquée, vol 1. Presses agronomiques de Gembloux, Gembloux

    Google Scholar 

  • Delgado C, Pacheco J, Cabrera A, Batllori E, Orellana R, Bautista F (2010) Quality of groundwater for irrigation in tropical karst environment: the case of Yucatan, Mexico. Agric Water Manag 97(10):1423–1433

    Article  Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. Department of Water Science and Engineering, University of California, Davis

    Google Scholar 

  • Eaton FM (1950) Significance of carbonates in irrigation waters. Soil Sci 69(2):123–134

    Article  Google Scholar 

  • Fetter CW (1990) Applied hydrogeology. CBS Publishers & Distributors, New Delhi

    Google Scholar 

  • Güler C, Kurt MA, Alpaslan M, Akbulut C (2012) Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J Hydrol 414–415:435–451

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernández JM, Fernández L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Res 34:807–816

    Article  Google Scholar 

  • Huang G, Sun J, Zhang Y, Chen Z, Liu F (2013) Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area. South China Sci Total Environ 463–464:209–221

    Article  Google Scholar 

  • Jedoui Y (2000) Sédimentologie et géochronologie des dépôts littoraux quaternaires: reconstitution des variations des paléoclimats et du niveau marin dans le Sud-Est tunisien. These de doctorat es-sciences géologiques, université de Tunis II

  • Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397(3):151–166

    Article  Google Scholar 

  • Kharroubi A, Tlahigue F, Agoubi B, Azri C, Bouri S (2012) Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia. Environ Earth Sci 67(7):2089–2100

    Article  Google Scholar 

  • Kolsi SH, Bouri S, Hachicha W, Dhia HB (2013) Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: a case study of Hajeb Elyoun-Jelma, Central Tunisia. Environ Earth Sci 70(5):2215–2224

    Article  Google Scholar 

  • Mamou A (1990) Caractéristiques, évaluation et gestion des ressources en eau du Sud-Tunisien. Doctoral dissertation, Paris 11

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analysis. Appl Geochem 26:1399–1413

    Article  Google Scholar 

  • Moya CE, Raiber M, Taulis M, Cox ME (2015) Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach. Sci Total Environ 508:411–426

    Article  Google Scholar 

  • Narasimha G, Sridevi A, Buddolla V, Subhosh CM, Rajasekhar RB (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol 5(5):472–476

    Google Scholar 

  • Ncibi K, Gaaloul N, Gasmi A (2016) Contribution de l’analyse multivariée et des SIG pour la caractérisation hydrochimique de la nappe phréatique de la plaine de Sidi Bouzid (Tunisie centrale)/[Contribution of the multivariate analysis and the GIS for Hydrochemical characterization of phreatic aquifer to the plain of Sidi Bouzid (Central Tunisia)]. Int J Innov Appl Stud 15(3):667

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. geological survey techniques and methods

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water‐analyses. Eos Trans Am Geophys Union 25(6):914–928

    Article  Google Scholar 

  • Raghunath HM (1987) Ground water. New Age International, Seborga

    Google Scholar 

  • Ramesh K, Elango L (2011) Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. J Environ Monit Assess. https://doi.org/10.1007/s10661-011-2231-3

    Google Scholar 

  • Razali NM, Wah YB (2011) Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2(1):21–33

    Google Scholar 

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, Chichester

    Book  Google Scholar 

  • Richards LA (1954) (US Salinity Laboratory) Diagnosis and improvement of saline and alkaline soils, US Department of Agriculture hand book

  • Simler R (2009) Diagrammes. Laboratoire d’Hydrogéologie d’Avignon, Avignon

    Google Scholar 

  • Szabolcs I, Darab C (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th international congress of ISSS, Trans, II (pp 803–812)

  • Thorne DW, Peterson HB (1954) Irrigated soils: their fertility and management. Blakiston, New York

    Google Scholar 

  • Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A (2015) Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. J Geochem Explor 159:79–92

    Article  Google Scholar 

  • Wanda E, Monjerezi M, Mwatseteza JF, Kazembe LN (2011) Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi. Phys Chem Earth Parts A/B/C 36(14):1197–1207

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grou** to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters, vol 969. USDA Circular, Washington, DC, USA

    Google Scholar 

  • Williams B, Onsman A, Brown T (2010) Exploratory factor analysis: a five-step guide for novices. J Emerg Primary Health Care (JEPHC) 8(3):990399-1–990399-13

    Google Scholar 

  • Zabala ME, Martínez S, Manzano M, Vives L (2016) Groundwater chemical baseline values to assess the recovery plan in the Matanza-Riachuelo River basin, Argentina. Sci Total Environ 541:1516–1530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachaer Ayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, B., Jmal, I., Sahal, S. et al. Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environ Earth Sci 76, 821 (2017). https://doi.org/10.1007/s12665-017-7168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7168-6

Keywords

Navigation