Log in

High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

(Ultra) high-pressure homogenization ((U)HPH) is one of the emerging technologies being studied and developed for various applications in the food industry. (U)HPH was suggested as an effective tool for achieving microbial safety and extending the product shelf life of liquid foods in a continuous process while minimizing some negative attributes of thermal processing. The valve geometry, pressure level, inlet temperature, and the number of homogenization cycles are all factors affecting the level of microbial inactivation and the extent of the techno-functionalities of food biopolymers and matrices. Turbulence, high shear, cavitation, and temperature increase induced by (U)HPH treatments enhance emulsion stability, stabilize proteins in solutions, reduce particle size distributions, and increase the accessibility of health-promoting compounds. This review is a comprehensive and updated overview of the engineering aspects of the (U)HPH process, specifically focusing on (U)HPH modification of food components such as polysaccharides, proteins, and bioactive compounds. A detailed description of the potential applications in food products beyond microbial inactivation is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aida TM, Yamagata T, Watanabe M, Smith RL (2010) Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym 80:296–302. https://doi.org/10.1016/j.carbpol.2009.11.032

    Article  CAS  Google Scholar 

  2. van Aken GA (2016) Polysaccharides in food emulsions. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications, 2nd edn. CRC/Taylor & Francis, Boca Raton, pp 521–540

    Google Scholar 

  3. Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Res 344:660–666. https://doi.org/10.1016/j.carres.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  4. Alonso-Miravalles L, O’Mahony J (2018) Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods 7:1–17. https://doi.org/10.3390/foods7050073

    Article  CAS  Google Scholar 

  5. Alves Filho EG, de Brito ES, Rodrigues S (2020) Effects of cold plasma processing in food components. In: Bermudez-Aguirre D (ed) Advances in cold plasma applications for food safety and preservation. Academic Press, London, pp 253–268

    Chapter  Google Scholar 

  6. Amador Espejo GG, Hernández-Herrero MM, Juan B, Trujillo AJ (2014) Inactivation of Bacillus spores inoculated in milk by ultra high pressure homogenization. Food Microbiol 44:204–210. https://doi.org/10.1016/j.fm.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  7. Augusto PED, Ibarz A, Cristianini M (2012) Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. J Food Eng 111:570–579. https://doi.org/10.1016/j.jfoodeng.2012.03.015

    Article  Google Scholar 

  8. Augusto PED, Ibarz A, Cristianini M (2012) Effect of high pressure homogenization (HPH) on the rheological properties of a fruit juice serum model. J Food Eng 111:474–477. https://doi.org/10.1016/j.jfoodeng.2012.02.033

    Article  Google Scholar 

  9. Balasubramaniam VM(B), Martínez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure–based technologies in the food industry. Annu Rev Food Sci Technol 6:435–462. https://doi.org/10.1146/annurev-food-022814-015539

    Article  CAS  PubMed  Google Scholar 

  10. Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (2016) High-pressure processing equipment for the food industry. In: Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (eds) High pressure processing of food principles, technology and applications, 1st edn. Springer, New York, pp 63–65

    Chapter  Google Scholar 

  11. Barba FJ, Grimi N, Vorobiev E (2014) New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 7:45–62. https://doi.org/10.1007/s12393-014-9095-6

    Article  CAS  Google Scholar 

  12. Berk Z (2018) Mixing. In: Berk Z (ed) Food process engineering and technology, 3rd edn. Academic Press, London, pp 193–217

    Chapter  Google Scholar 

  13. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2011) An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Eng Rev 3:44–61. https://doi.org/10.1007/s12393-010-9030-4

    Article  Google Scholar 

  14. Bernaerts TMM, Verstreken H, Dejonghe C, Gheysen L, Foubert I, Grauwet T, Van Loey AM (2020) Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. J Funct Foods 65:103770. https://doi.org/10.1016/j.jff.2019.103770

    Article  CAS  Google Scholar 

  15. Betoret E, Betoret N, Carbonell JV, Fito P (2009) Effects of pressure homogenization on particle size and the functional properties of citrus juices. J Food Eng 92:18–23. https://doi.org/10.1016/j.jfoodeng.2008.10.028

    Article  Google Scholar 

  16. Betoret E, Betoret N, Rocculi P, Dalla Rosa M (2015) Strategies to improve food functionality: structure-property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends Food Sci Technol 46:1–12

    Article  CAS  Google Scholar 

  17. Betoret E, Sentandreu E, Betoret N, Fito P (2012) Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering 111:28–33. https://doi.org/10.1016/j.jfoodeng.2012.01.035

    Article  Google Scholar 

  18. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Molecular Nutrition and Food Research 54:1215–1247. https://doi.org/10.1002/mnfr.200900608

    Article  CAS  PubMed  Google Scholar 

  19. Briviba K, Gräf V, Walz E, Guamis B, Butz P (2016) Ultra high pressure homogenization of almond milk: physico-chemical and physiological effects. Food Chem 192:82–89. https://doi.org/10.1016/j.foodchem.2015.06.063

    Article  CAS  PubMed  Google Scholar 

  20. Bury D, Jelen P, Kaláb M (2001) Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Innov Food Sci Emerg Technol 2:23–29. https://doi.org/10.1016/S1466-8564(00)00039-4

  21. Campos FP, Cristianini M (2007) Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenisation. Innov Food Sci Emerg Technol 8:226–229. https://doi.org/10.1016/j.ifset.2006.12.002

    Article  CAS  Google Scholar 

  22. Carbonell JV, Navarro JL, Izquierdo L, Sentandreu E (2013) Influence of high pressure homogenization and pulp reduction on residual pectinmethylesterase activity, cloud stability and acceptability of Lane Late orange juice: a study to obtain high quality orange juice with extended shelf life. J Food Eng 119:696–700. https://doi.org/10.1016/j.jfoodeng.2013.06.041

    Article  CAS  Google Scholar 

  23. Cerdán-Calero M, Izquierdo L, Sentandreu E (2013) Valencia Late orange juice preserved by pulp reduction and high pressure homogenization: sensory quality and gas chromatography-mass spectrometry analysis of volatiles. LWT Food Sci Technol 51:476–483. https://doi.org/10.1016/j.lwt.2012.11.016

    Article  CAS  Google Scholar 

  24. Chandonnet S, Korstvedt H, Siciliano AA (1985) Preparation of microemulsions by microfluidization. Soap, Cosmetics, Chemical Specialities 61:37–38

    CAS  Google Scholar 

  25. Chen J, Liang RH, Liu W, Liu CM, Li T, Tu ZC, Wan J (2012) Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocoll 28:121–129. https://doi.org/10.1016/j.foodhyd.2011.12.018

    Article  CAS  Google Scholar 

  26. Chen X, Xu X, Zhou G (2016) Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innov Food Sci Emerg Technol 33:170–179. https://doi.org/10.1016/j.ifset.2015.11.012

    Article  CAS  Google Scholar 

  27. Cilla A, Bosch L, Barberá R, Alegría A (2018) Effect of processing on the bioaccessibility of bioactive compounds – a review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J Food Compos Anal 68:3–15. https://doi.org/10.1016/j.jfca.2017.01.009

    Article  CAS  Google Scholar 

  28. Ciron CIE, Gee VL, Kelly AL, Auty MAE (2012) Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chem 130:510–519. https://doi.org/10.1016/j.foodchem.2011.07.056

    Article  CAS  Google Scholar 

  29. Clark A, Prescott T, Khan A, Olabi AG (2010) Causes of breakage and disruption in a homogeniser. Appl Energy 87:3680–3690. https://doi.org/10.1016/j.apenergy.2010.05.007

    Article  CAS  Google Scholar 

  30. Clark A V., Theodore R., Rejimbal J, Gomez CMC (1993) Ultra-high pressure homogenization of unpasteurized juice. US Patent 5232726

  31. Codina-Torrella I, Guamis B, Ferragut V, Trujillo AJ (2017) Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of tiger nuts’ milk beverage. Innov Food Sci Emerg Technol 40:42–51. https://doi.org/10.1016/j.ifset.2016.06.023

    Article  CAS  Google Scholar 

  32. Codina-Torrella I, Guamis B, Zamora A, Quevedo JM, Trujillo AJ (2018) Microbiological stabilization of tiger nuts’ milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiol 69:143–150. https://doi.org/10.1016/j.fm.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  33. Corredig M, Wicker L (2001) Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocoll 15:17–23. https://doi.org/10.1016/S0268-005X(00)00044-8

    Article  CAS  Google Scholar 

  34. Cote GL, Willet JL (1999) Thermomechanical depolymerization of dextran. Carbohydr Polym 39:119–126. https://doi.org/10.1016/S0144-8617(98)00165-9

    Article  CAS  Google Scholar 

  35. Cruz N, Capellas M, Hernández M, Trujillo AJ, Guamis B, Ferragut V (2007) Ultra high pressure homogenization of soymilk: microbiological, physicochemical and microstructural characteristics. Food Res Int 40:725–732. https://doi.org/10.1016/j.foodres.2007.01.003

    Article  CAS  Google Scholar 

  36. Cruz N, Capellas M, Jaramillo DP, Trujillo AJ, Guamis B, Ferragut V (2009) Soymilk treated by ultra high-pressure homogenization: acid coagulation properties and characteristics of a soy-yogurt product. Food Hydrocoll 23:490–496. https://doi.org/10.1016/j.foodhyd.2008.03.010

    Article  CAS  Google Scholar 

  37. Datta N, Hayes MG, Deeth HC, Kelly AL (2005) Significance of frictional heating for effects of high pressure homogenisation on milk. J Dairy Res 72:393–399. https://doi.org/10.1017/S0022029905001056

    Article  CAS  PubMed  Google Scholar 

  38. David B, Boldo P (2008) A statistical thermodynamic approach to sonochemical reactions. Ultrason Sonochem 15:78–88. https://doi.org/10.1016/j.ultsonch.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Day L (2013) Proteins from land plants - potential resources for human nutrition and food security. Trends Food Sci Technol 32:25–42. https://doi.org/10.1016/J.TIFS.2013.05.005

    Article  CAS  Google Scholar 

  40. Deliza R, Rosenthal A, Abadio FBD, Silva CHO, Castillo C (2005) Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. J Food Eng 67:241–246. https://doi.org/10.1016/j.jfoodeng.2004.05.068

    Article  Google Scholar 

  41. Diaz JV, Anthon GE, Barrett DM (2007) Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: effects of pH, temperature, and degree of methyl esterification. J Agric Food Chem 55:5131–5136. https://doi.org/10.1021/jf0701483

    Article  CAS  PubMed  Google Scholar 

  42. Diels AMJ, Callewaert L, Wuytack EY, Masschalck B, Michiels CW (2004) Moderate temperatures affect Escherichia coli inactivation by high-pressure homogenization only through fluid viscosity. Biotechnol Prog 20:1512–1517. https://doi.org/10.1021/bp0499092

    Article  CAS  PubMed  Google Scholar 

  43. Diels AMJ, Michiels CW (2006) High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 32:201–216. https://doi.org/10.1080/10408410601023516

    Article  CAS  PubMed  Google Scholar 

  44. Dong X, Zhao M, Yang B, Yang X, Shi J, Jiang Y (2011) Effect of high-pressure homogenization on the functional property of peanut protein. J Food Process Eng 34:2191–2204. https://doi.org/10.1111/j.1745-4530.2009.00546.x

    Article  CAS  Google Scholar 

  45. Donsì F, Annunziata M, Ferrari G (2013) Microbial inactivation by high pressure homogenization: effect of the disruption valve geometry. J Food Eng 115:362–370. https://doi.org/10.1016/j.jfoodeng.2012.10.046

    Article  Google Scholar 

  46. Donsì F, Ferrari G, Maresca P (2009) High-pressure homogenization for food sanitization. In: Barbosa-Cánovas G (ed) Global issues in food science and technology. Springer/AP, Amsterdam, pp 309–352

    Chapter  Google Scholar 

  47. Donsì F, Sessa M, Ferrari G (2012) Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Ind Eng Chem Res 51:7606–7618. https://doi.org/10.1021/ie2017898

    Article  CAS  Google Scholar 

  48. Doublier J-L, Garniera C, Renarda D, Sanchez C (2000) Protein-polysaccharide interactions. Current Opinion in Colloid and Interface Science 5:202–204. https://doi.org/10.1016/S1359-0294(00)00054-6

    Article  CAS  Google Scholar 

  49. Dumay E, Chevalier-Lucia D, Picart-Palmade L, Benzaria A, Gràcia-Julià A, Blayo C (2013) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci Technol 31:13–26. https://doi.org/10.1016/j.tifs.2012.03.005

    Article  CAS  Google Scholar 

  50. Escobar D, Clark S, Ganesan V, Repiso L, Waller J, Harte F (2011) High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese. J Dairy Sci 94:1201–1210. https://doi.org/10.3168/jds.2010-3870

    Article  CAS  PubMed  Google Scholar 

  51. Fantin G, Fogagnolo M, Guerzoni ME, Lanciotti R, Medici A, Pedrini P, Rossi D (1996) Effect of high hydrostatic pressure and high pressure homogenization on the enantioselectivity of microbial reductions. Tetrahedron Asymmetry 7:2879–2887. https://doi.org/10.1016/0957-4166(96)00379-5

    Article  CAS  Google Scholar 

  52. Fernandez-Avila C, Hebishy E, Donsì F, Arranz E, Trujillo AJ (2019) Production of food bioactive-loaded nanostructures by high-pressure homogenization. In: Jafari SM (ed) Nanoencapsulation of food ingredients by specialized equipment, 1st edn. Elsevier, San Diego, pp 251–340

    Chapter  Google Scholar 

  53. Fernandez-Avila C, Trujillo AJ (2016) Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. Food Chem 209:104–113. https://doi.org/10.1016/j.foodchem.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  54. Ferragut V, Cruz NS, Trujillo A, Guamis B, Capellas M (2009) Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J Food Eng 92:63–69

    Article  Google Scholar 

  55. Ferragut V, Hernández-Herrero M, Veciana-Nogués MT, Borras-Suarez M, González-Linares J, Vidal-Carou MC, Guamis B (2015) Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: physicochemical, microbiological, nutritional and toxicological characteristics. J Sci Food Agric 95:953–961. https://doi.org/10.1002/jsfa.6769

    Article  CAS  PubMed  Google Scholar 

  56. Ferragut V, Valencia-Flores D, Pérez-González M, Gallardo J, Hernández-Herrero M (2015) Quality characteristics and shelf-life of ultra-high pressure homogenized (UHPH) almond beverage. Foods 4:159–172. https://doi.org/10.3390/foods4020159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chemical Engineering Science 59:843–853. https://doi.org/10.1016/j.ces.2003.11.017

    Article  CAS  Google Scholar 

  58. Floury J, Desrumaux A, Axelos MAV, Legrand J (2002) Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocoll 16:47–53. https://doi.org/10.1016/S0268-005X(01)00039-X

    Article  CAS  Google Scholar 

  59. Friedrich I, Müller-Goymann CC (2003) Characterization of solidified reverse micellar solutions (SRMS) and production development of SRMS-based nanosuspensions. Eur J Pharm Biopharm 56:111–119. https://doi.org/10.1016/S0939-6411(03)00043-2

    Article  CAS  PubMed  Google Scholar 

  60. Garna H, Mabon N, Nott K, Wathelet B, Paquot M (2006) Kinetic of the hydrolysis of pectin galacturonic acid chains and quantification by ionic chromatography. Food Chem 96:477–484. https://doi.org/10.1016/j.foodchem.2005.03.002

    Article  CAS  Google Scholar 

  61. Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry- a review. Int Dairy J 12:541–553. https://doi.org/10.1016/S0958-6946(02)00038-9

    Article  CAS  Google Scholar 

  62. Georget E, Miller B, Aganovic K, Callanan M, Heinz V, Mathys A (2014) Bacterial spore inactivation by ultra-high pressure homogenization. Innov Food Sci Emerg Technol 26:116–123. https://doi.org/10.1016/j.ifset.2014.08.004

    Article  Google Scholar 

  63. Georget E, Miller B, Callanan M, Heinz V, Mathys A (2014) (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods – a review. Frontiers in Nutrition 1:15. https://doi.org/10.3389/fnut.2014.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grácia-Juliá A, René M, Cortés-Muñoz M, Picart L, López-Pedemonte T, Chevalier D, Dumay E (2008) Effect of dynamic high pressure on whey protein aggregation: a comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll 22:1014–1032. https://doi.org/10.1016/j.foodhyd.2007.05.017

    Article  CAS  Google Scholar 

  65. Graham D, Phillips M (1979) Proteins at liquid interfaces: kinetics of adsorption and surface denaturation. Journal of Colloid and Interfaces Science 70:403–414

    Article  CAS  Google Scholar 

  66. Guan Y, Zhou L, Bi J, Yi J, Liu X, Chen Q, Wu X, Zhou M (2016) Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innov Food Sci Emerg Technol 36:320–329. https://doi.org/10.1016/j.ifset.2016.07.009

    Article  CAS  Google Scholar 

  67. Guilloux K, Gaillard I, Courtois J, Courtois B, Petit E (2009) Production of arabinoxylan-oligosaccharides from flaxseed (Linum usitatissimum). J Agric Food Chem 57:11308–11313. https://doi.org/10.1021/jf902212z

    Article  CAS  PubMed  Google Scholar 

  68. Gul O, Atalar I, Mortas M, Saricaoglu FT, Yazıcı F (2018) Application of TOPSIS methodology to determine optimum hazelnut cake concentration and high pressure homogenization condition for hazelnut milk production based on physicochemical, structural and sensory properties. Journal of Food Measurement and Characterization 12:2404–2415. https://doi.org/10.1007/s11694-018-9857-6

    Article  Google Scholar 

  69. Gul O, Saricaoglu FT, Mortas M, Atalar I, Yazici F (2017) Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk. Innov Food Sci Emerg Technol 41:411–420. https://doi.org/10.1016/j.ifset.2017.05.002

    Article  CAS  Google Scholar 

  70. Harte F (2016) Food processing by high-pressure homogenization. In: Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (eds) High pressure processing of food principles, technology and applications, 1st edn. Springer, New York, pp 123–141

    Chapter  Google Scholar 

  71. Harte F, Venegas R (2010) A model for viscosity reduction in polysaccharides subjected to high-pressure homogenization. J Texture Stud 41:49–61. https://doi.org/10.1111/j.1745-4603.2009.00212.x

    Article  Google Scholar 

  72. Harte FM, Martinez MC, Mohan MS (2016) Foaming and emulsifying properties of high pressure jet processing pasteurized milk. US Pat No 10,390,543

  73. Hayes MG, Kelly AL (2003) High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. J Dairy Res 70:297–305. https://doi.org/10.1017/S0022029903006320

    Article  CAS  PubMed  Google Scholar 

  74. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K (2005) Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 299:167–177. https://doi.org/10.1016/j.ijpharm.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  75. Hernández A, Harte FM (2008) Manufacture of acid gels from skim milk using high-pressure homogenization. J Dairy Sci 91:3761–3767. https://doi.org/10.3168/jds.2008-1321

    Article  CAS  PubMed  Google Scholar 

  76. Hettiarachchi CA, Corzo-Martínez M, Mohan MS, Harte FM (2018) Enhanced foaming and emulsifying properties of high-pressure-jet-processed skim milk. Int Dairy J 87:60–66. https://doi.org/10.1016/j.idairyj.2018.06.004

    Article  CAS  Google Scholar 

  77. Hettiarachchi CA, Voronin GL, Harte FM (2019) Spray drying of high pressure jet-processed condensed skim milk. J Food Eng 261:1–8. https://doi.org/10.1016/j.jfoodeng.2019.04.007

    Article  CAS  Google Scholar 

  78. Innings F, Trägårdh C (2007) Analysis of the flow field in a high-pressure homogenizer. Exp Thermal Fluid Sci 32:345–354. https://doi.org/10.1016/j.expthermflusci.2007.04.007

    Article  CAS  Google Scholar 

  79. Innocente N, Biasutti M, Venir E, Spaziani M, Marchesini G (2009) Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J Dairy Sci 92:1864–1875. https://doi.org/10.3168/jds.2008-1797

    Article  CAS  PubMed  Google Scholar 

  80. Iordache M, Jelen P (2003) High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innov Food Sci Emerg Technol 4:367–376. https://doi.org/10.1016/S1466-8564(03)00061-4

    Article  CAS  Google Scholar 

  81. Jacobo ÁS, Saldo J, Gervilla R (2014) Influence of high-pressure and ultra-high-pressure homogenization on antioxidants in fruit juice. In: Processing and impact on antioxidants in beverages. Elsevier Inc., pp 185–193

  82. Jeske S, Zannini E, Arendt EK (2018) Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res Int 110:42–51. https://doi.org/10.1016/j.foodres.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  83. Jiao B, Shi A, Liu H, Sheng X, Liu L, Hu H, Adhikari B, Wang Q (2018) Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocoll 77:329–335. https://doi.org/10.1016/j.foodhyd.2017.10.009

    Article  CAS  Google Scholar 

  84. **glin Y, Shujun W, Fengmin J, Sun L, Yu J (2009) The structure of C-type Rhizoma dioscorea starch granule revealed by acid hydrolysis method. Food Chem 113:585–591. https://doi.org/10.1016/j.foodchem.2008.08.040

    Article  CAS  Google Scholar 

  85. Karacam CH, Sahin S, Oztop MH (2015) Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT Food Sci Technol 64:932–937. https://doi.org/10.1016/j.lwt.2015.06.064

    Article  CAS  Google Scholar 

  86. Kasaai MR, Charlet G, Paquin P, Arul J (2003) Fragmentation of chitosan by microfluidization process. Innov Food Sci Emerg Technol 4:403–413

    Article  CAS  Google Scholar 

  87. Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: areview. Bioresour Technol 77:215–227. https://doi.org/10.1016/S0960-8524(00)00118-8

    Article  CAS  PubMed  Google Scholar 

  88. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16. https://doi.org/10.1016/j.ejpb.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  89. Kivelä R, Pitkänen L, Laine P, Aseyev V, Sontag-Strohm T (2010) Influence of homogenisation on the solution properties of oat β-glucan. Food Hydrocoll 24:611–618. https://doi.org/10.1016/j.foodhyd.2010.02.008

    Article  CAS  Google Scholar 

  90. Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 53:891–898. https://doi.org/10.1016/S0009-2509(97)00414-4

    Article  CAS  Google Scholar 

  91. Kluge J, Muhrer G, Mazzotti M (2012) High pressure homogenization of pharmaceutical solids. J Supercrit Fluids 66:380–388. https://doi.org/10.1016/j.supflu.2012.01.009

    Article  CAS  Google Scholar 

  92. Kopec RE, Failla ML (2017) Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J Food Compos Anal 68:16–30. https://doi.org/10.1016/j.jfca.2017.06.008

    Article  CAS  Google Scholar 

  93. Krall SM, McFeeters RF (1998) Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. J Agric Food Chem 46:1311–1315. https://doi.org/10.1021/jf970473y

    Article  CAS  Google Scholar 

  94. Kravtchenko TP, Penci M, Voragen AGJ, Pilnik W (1993) Enzymic and chemical degradation of some industrial pectins. Carbohydr Polym 20:195–205. https://doi.org/10.1016/0144-8617(93)90151-S

    Article  CAS  Google Scholar 

  95. Kroh LW (1994) Caramelisation in food and beverages. Food Chem 51:373–379. https://doi.org/10.1016/0308-8146(94)90188-0

    Article  CAS  Google Scholar 

  96. Kubo MTK, Augusto PED, Cristianini M (2013) Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res Int 51:170–179. https://doi.org/10.1016/j.foodres.2012.12.004

    Article  CAS  Google Scholar 

  97. Kumar ABV, Gowda LR, Tharanathan RN (2004) Non-specific depolymerization of chitosan by pronase and characterization of the resultant products. Eur J Biochem 271:713–723. https://doi.org/10.1111/j.1432-1033.2003.03975.x

    Article  CAS  PubMed  Google Scholar 

  98. Lagoueyte N, Paquin P (1998) Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocoll 12:365–371. https://doi.org/10.1016/S0268-005X(98)00004-6

    Article  CAS  Google Scholar 

  99. Lamprecht A, Ubrich N, Hombreiro Pérez M, Lehr CM, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184:97–105. https://doi.org/10.1016/S0378-5173(99)00107-6

    Article  CAS  PubMed  Google Scholar 

  100. Lanciotti R, Gardini F, Sinigaglia M, Guerzoni ME (1996) Effects of growth conditions on the resistance of some pathogenic and spoilage species to high pressure homogenization. Lett Appl Microbiol 22:165–168. https://doi.org/10.1111/j.1472-765X.1996.tb01134.x

    Article  CAS  PubMed  Google Scholar 

  101. Lanciotti R, Sinigaglia M, Angelini P, Guerzoni ME (1994) Effects of homogenization pressure on the survival and growth of some food spoilage and pathogenic micro-organisms. Lett Appl Microbiol 18:319–322. https://doi.org/10.1111/j.1472-765X.1994.tb00878.x

    Article  Google Scholar 

  102. Lanciotti R, Vannini L, Pittia P, Guerzoni ME (2004) Suitability of high-dynamic-pressure-treated milk for the production of yoghurt. Food Microbiol 21:753–760. https://doi.org/10.1016/j.fm.2004.01.014

    Article  CAS  Google Scholar 

  103. Lander R, Manger W, Scouloudis M, Ku A, Davis C, Lee A (2000) Gaulin homogenization: a mechanistic study. Biotechnol Prog 16:80–85. https://doi.org/10.1021/bp990135c

    Article  CAS  PubMed  Google Scholar 

  104. Leite TS, Augusto PED, Cristianini M (2014) The use of high pressure homogenization (HPH) to reduce consistency of concentrated orange juice (COJ). Innov Food Sci Emerg Technol 26:124–133. https://doi.org/10.1016/j.ifset.2014.08.005

    Article  Google Scholar 

  105. Leite TS, Augusto PED, Cristianini M (2016) Frozen concentrated orange juice (FCOJ) processed by the high pressure homogenization (HPH) technology: effect on the ready-to-drink juice. Food Bioprocess Technol 9:1070–1078. https://doi.org/10.1007/s11947-016-1688-z

    Article  CAS  Google Scholar 

  106. Lemmens L, Tchuenche ES, van Loey AM, Hendrickx ME (2013) Beta-carotene isomerisation in mango puree as influenced by thermal processing and high-pressure homogenisation. Eur Food Res Technol 236:155–163. https://doi.org/10.1007/s00217-012-1872-y

    Article  CAS  Google Scholar 

  107. Li X, Farid M (2016) A review on recent development in non-conventional food sterilization technologies. J Food Eng 182:33–45. https://doi.org/10.1016/j.jfoodeng.2016.02.026

    Article  Google Scholar 

  108. Liu HH, Chien JT, Kuo MI (2013) Ultra high pressure homogenized soy flour for tofu making. Food Hydrocoll 32:278–285. https://doi.org/10.1016/j.foodhyd.2013.01.005

    Article  CAS  Google Scholar 

  109. Liu HH, Kuo MI (2016) Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocoll 52:741–748. https://doi.org/10.1016/j.foodhyd.2015.08.018

    Article  CAS  Google Scholar 

  110. Liu J, Bi J, Liu X, Zhang B, Wu X, Wellala CKD, Zhang B (2019) Effects of high pressure homogenization and addition of oil on the carotenoid bioaccessibility of carrot juice. Food Function 10:458–468. https://doi.org/10.1039/c8fo01925h

    Article  CAS  PubMed  Google Scholar 

  111. Liu J, Zamora A, Castillo M, Saldo J (2018) Modeling the effect on skim milk during ultra-high pressure homogenization using front-face fluorescence. Innov Food Sci Emerg Technol 47:439–444. https://doi.org/10.1016/j.ifset.2018.04.009

    Article  CAS  Google Scholar 

  112. Liu J, Zamora A, Castillo M, Saldo J (2018) Modeling of the changes in bovine milk caused by ultra-high pressure homogenization using front-face fluorescence spectroscopy. J Food Eng 233:88–97. https://doi.org/10.1016/j.jfoodeng.2018.04.010

    Article  CAS  Google Scholar 

  113. Liu X, Liu J, Bi J, Cao F, Ding Y, Peng J (2019) Effects of high pressure homogenization on physical stability and carotenoid degradation kinetics of carrot beverage during storage. J Food Eng 263:63–69. https://doi.org/10.1016/j.jfoodeng.2019.05.034

    Article  CAS  Google Scholar 

  114. Liu X, Liu J, Bi J, Yi J, Peng J, Ning C, Wellala CKD, Zhang B (2019) Effects of high pressure homogenization on pectin structural characteristics and carotenoid bioaccessibility of carrot juice. Carbohydr Polym 203:176–184. https://doi.org/10.1016/j.carbpol.2018.09.055

    Article  CAS  PubMed  Google Scholar 

  115. Loira I, Morata A, Bañuelos MA, Puig-Pujol A, Guamis B, González C, Suárez-Lepe JA (2018) Use of ultra-high pressure homogenization processing in winemaking: control of microbial populations in grape musts and effects in sensory quality. Innov Food Sci Emerg Technol 50:50–56. https://doi.org/10.1016/j.ifset.2018.10.005

    Article  CAS  Google Scholar 

  116. Lopez-Sanchez P, Svelander C, Bialek L, Schumm S, Langton M (2011) Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions. J Food Sci 76:E130–E140. https://doi.org/10.1111/j.1750-3841.2010.01894.x

    Article  CAS  PubMed  Google Scholar 

  117. Lopez BG, Mesa AJT, Perez VF, Terre JMQ, Pedemonte TJL, Dunat MNB (2010) Continuous system and procedure of sterilization and physical stabilization of pumpable fluids by means of an ultra-high pressure homogenization. US Pat. 9192190B2

  118. Loveday SM (2019) Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annu Rev Food Sci Technol 10:311–339. https://doi.org/10.1146/annurev-food-032818-121128

    Article  CAS  PubMed  Google Scholar 

  119. Lucey JA (2001) The relationship between rheological parameters and whey separation in milk gels. Food Hydrocoll 15:603–608. https://doi.org/10.1016/S0268-005X(01)00043-1

    Article  CAS  Google Scholar 

  120. Maresca P, Donsì F, Ferrari G (2011) Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. J Food Eng 104:364–372. https://doi.org/10.1016/j.jfoodeng.2010.12.030

    Article  CAS  Google Scholar 

  121. Martin AH, Grolle K, Bos MA, Cohen Stuart MA, Van Vliet T (2002) Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability. J Colloid Interface Sci 254:175–183. https://doi.org/10.1006/jcis.2002.8592

    Article  CAS  PubMed  Google Scholar 

  122. Martínez-Monteagudo SI, Yan B, Balasubramaniam VM (2017) Engineering process characterization of high-pressure homogenization—from laboratory to industrial scale. Food Eng Rev 9:143–169. https://doi.org/10.1007/s12393-016-9151-5

    Article  CAS  Google Scholar 

  123. Martínez KD, Ganesan V, Pilosof AMR, Harte FM (2011) Effect of dynamic high-pressure treatment on the interfacial and foaming properties of soy protein isolate-hydroxypropylmethylcelluloses systems. Food Hydrocoll 25:1640–1645. https://doi.org/10.1016/j.foodhyd.2011.02.013

    Article  CAS  Google Scholar 

  124. Meyer RS (2001) Ultra high pressure, high temperature food preservation process. US Pat 6,177,115

  125. Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13:491–551. https://doi.org/10.1016/0734-9750(95)02007-P

    Article  CAS  PubMed  Google Scholar 

  126. Miller J, Rogowski M, Kelly W (2002) Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer. Biotechnol Prog 18:1060–1067. https://doi.org/10.1021/bp020010z

    Article  CAS  PubMed  Google Scholar 

  127. Mogol BA, Gökmen V (2016) Thermal process contaminants: acrylamide, chloropropanols and furan. Curr Opin Food Sci 7:86–92. https://doi.org/10.1016/j.cofs.2016.01.005

    Article  Google Scholar 

  128. Möschwitzer J, Achleitner G, Pomper H, Müller RH (2004) Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm 58:615–619. https://doi.org/10.1016/j.ejpb.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  129. Moscovici Joubran A, Katz IH, Okun Z, Davidovich-Pinhas M, Shpigelman A (2019) The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innov Food Sci Emerg Technol 57:102203. https://doi.org/10.1016/j.ifset.2019.102203

    Article  CAS  Google Scholar 

  130. Mújica-Paz H, Valdez-Fragoso A, Samson CT, Welti-Chanes J, Torres A (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4:969–985. https://doi.org/10.1007/s11947-011-0543-5

    Article  Google Scholar 

  131. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177. https://doi.org/10.1016/S0939-6411(00)00087-4

    Article  PubMed  Google Scholar 

  132. Nikolić MV, Mojovic L (2007) Hydrolysis of apple pectin by the coordinated activity of pectic enzymes. Food Chem 101:1–9. https://doi.org/10.1016/j.foodchem.2005.12.053

    Article  CAS  Google Scholar 

  133. Nishinari K (2016) Polysaccharide rheology and in-mouth perception. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC/Taylor & Francis, Boca Raton, pp 541–588

    Google Scholar 

  134. Nunes L, Tavares GM (2019) Thermal treatments and emerging technologies: impacts on the structure and techno-functional properties of milk proteins. Trends Food Sci Technol 90:88–99. https://doi.org/10.1016/j.tifs.2019.06.004

    Article  CAS  Google Scholar 

  135. Paquin P (1999) Technological properties of high pressure homogenizers: the efect of fat globules, milk proteins, and polysaccharides. Int Dairy J 9:329–335. https://doi.org/10.1016/S0958-6946(99)00083-7

    Article  CAS  Google Scholar 

  136. Paquin P, Lacasse J, Subirade M, Turgeon S (1999) Continuous process of dynamic high-pressure homogenization for the denaturation of proteins. US6511695B1

  137. Patrignani F, Lanciotti R (2016) Applications of high and ultra high pressure homogenization for food safety. Front Microbiol 7:1132. https://doi.org/10.3389/fmicb.2016.01132

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pereda J, Ferragut V, Buffa M, Guamis B, Trujillo AJ (2008) Proteolysis of ultra-high pressure homogenised treated milk during refrigerated storage. Food Chem 111:696–702. https://doi.org/10.1016/j.foodchem.2008.04.040

    Article  CAS  Google Scholar 

  139. Pereda J, Ferragut V, Quevedo JM, Guamis B, Trujillo AJ (2007) Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk. J Dairy Sci 90:1081–1093. https://doi.org/10.3168/jds.S0022-0302(07)71595-3

    Article  CAS  PubMed  Google Scholar 

  140. Pereda J, Ferragut V, Quevedo JM, Guamis B, Trujillo AJ (2009) Heat damage evaluation in ultra-high pressure homogenized milk. Food Hydrocoll 23:1974–1979. https://doi.org/10.1016/j.foodhyd.2009.02.010

    Article  CAS  Google Scholar 

  141. Perez-Locas C, Yaylayan VA (2010) The Maillard reaction and food quality deterioration. In: Skibsted LH, Risbo JLM (eds) Chemical deterioration and physical instability of food and beverages. Woodhead Publishing, Oxford, pp 70–94

    Chapter  Google Scholar 

  142. Picart L, Thiebaud M, René M, Guiraud JP, Cheftel JC, Dumay E (2006) Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments. Journal of Dairy Research 73:454–463. https://doi.org/10.1017/S0022029906001853

    Article  CAS  Google Scholar 

  143. Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V (2012) Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT Food Sci Technol 46:42–48. https://doi.org/10.1016/j.lwt.2011.11.004

    Article  CAS  Google Scholar 

  144. Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V (2014) Sterilization and aseptic packaging of soymilk treated by ultra high pressure homogenization. Innov Food Sci Emerg Technol 22:81–88. https://doi.org/10.1016/j.ifset.2014.01.001

    Article  CAS  Google Scholar 

  145. Popper L, Knorr D (1990) Applications of high-pressure homogenization for food preservation. Food Technol 44:84–89

    Google Scholar 

  146. Rao MA (2014) Rheological properties of fluid foods. In: Rheology of fluid, semisolid, and solid foods principles and applications, 3rd edn. Springer, New York, pp 121–177

    Chapter  Google Scholar 

  147. Ridout MJ, Mackie AR, Wilde PJ (2004) Rheology of mixed β-casein/β-lactoglobulin films at the air-water interface. J Agric Food Chem 52:3930–3937. https://doi.org/10.1021/jf034854p

    Article  CAS  PubMed  Google Scholar 

  148. Rodarte D, Zamora A, Trujillo AJ, Juan B (2018) Effect of ultra-high pressure homogenization on cream: shelf life and physicochemical characteristics. LWT 92:108–115. https://doi.org/10.1016/j.lwt.2018.02.020

    Article  CAS  Google Scholar 

  149. Rodriguez Patino JM, Pilosof AMR (2011) Protein-polysaccharide interactions at fluid interfaces. Food Hydrocoll 25. https://doi.org/10.1016/j.foodhyd.2011.02.023

  150. Roesch RR, Corredig M (2003) Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. LWT Food Sci Technol 36:113–124. https://doi.org/10.1016/S0023-6438(02)00208-6

    Article  CAS  Google Scholar 

  151. Rota C, Liverani L, Spelta F, Mascellani G, Tomasi A, Iannone A, Vismara E (2005) Free radical generation during chemical depolymerization of heparin. Anal Biochem 344:193–203. https://doi.org/10.1016/j.ab.2005.06.043

    Article  CAS  PubMed  Google Scholar 

  152. Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308. https://doi.org/10.1016/j.renene.2012.04.039

    Article  CAS  Google Scholar 

  153. Sandra S, Dalgleish DG (2005) Effects of ultra-high-pressure homogenization and heating on structural properties of casein micelles in reconstituted skim milk powder. Int Dairy J 15:1095–1104. https://doi.org/10.1016/j.idairyj.2004.11.015

    Article  CAS  Google Scholar 

  154. dos Santos Aguilar JG, Cristianini M, Sato HH (2018) Modification of enzymes by use of high-pressure homogenization. Food Res Int 109:120–125. https://doi.org/10.1016/j.foodres.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  155. Saricaoglu FT (2020) Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. Int J Biol Macromol 144:760–769. https://doi.org/10.1016/j.ijbiomac.2019.11.034

    Article  CAS  PubMed  Google Scholar 

  156. Saricaoglu FT, Atalar I, Yilmaz VA, Odabas HI, Gul O (2019) Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. Food Chem 282:67–75. https://doi.org/10.1016/j.foodchem.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  157. Saricaoglu FT, Gul O, Besir A, Atalar I (2018) Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. J Food Eng 233:98–108. https://doi.org/10.1016/j.jfoodeng.2018.04.003

    Article  CAS  Google Scholar 

  158. Saricaoglu FT, Gul O, Tural S, Turhan S (2017) Potential application of high pressure homogenization (HPH) for improving functional and rheological properties of mechanically deboned chicken meat (MDCM) proteins. J Food Eng 215:161–171. https://doi.org/10.1016/j.jfoodeng.2017.07.029

    Article  CAS  Google Scholar 

  159. Sauer T, Robinson CW, Glick BR (1989) Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer. Biotechnol Bioeng 33:1330–1342. https://doi.org/10.1002/bit.260331016

    Article  CAS  PubMed  Google Scholar 

  160. Schmitt C, Sanchez C, Desobry-Banon S, Hardy J (1998) Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr 38:689–753. https://doi.org/10.1080/10408699891274354

    Article  CAS  PubMed  Google Scholar 

  161. Sentandreu E, Gurrea MADC, Betoret N, Navarro JL (2011) Changes in orange juice characteristics due to homogenization and centrifugation. J Food Eng 105:241–245. https://doi.org/10.1016/j.jfoodeng.2011.02.027

    Article  CAS  Google Scholar 

  162. Serra M, Trujillo AJ, Guamis B, Ferragut V (2009) Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocoll 23:82–91. https://doi.org/10.1016/j.foodhyd.2007.11.015

    Article  CAS  Google Scholar 

  163. Serra M, Trujillo AJ, Guamis B, Ferragut V (2009) Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. Int Dairy J 19:100–106. https://doi.org/10.1016/j.idairyj.2008.08.002

    Article  CAS  Google Scholar 

  164. Serra M, Trujillo AJ, Jaramillo PD, Guamis B, Ferragut V (2008) Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties. J Dairy Res 75:69–75. https://doi.org/10.1017/S0022029907003032

    Article  CAS  PubMed  Google Scholar 

  165. Serra M, Trujillo AJ, Quevedo JM, Guamis B, Ferragut V (2007) Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. Int Dairy J 17:782–790. https://doi.org/10.1016/j.idairyj.2006.10.001

    Article  CAS  Google Scholar 

  166. Sevenich R, Mathys A (2018) Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: a review. Compr Rev Food Sci Food Saf 17:646–662. https://doi.org/10.1111/1541-4337.12348

    Article  PubMed  Google Scholar 

  167. Sharabi S, Okun Z, Shpigelman A (2018) Changes in the shelf life stability of riboflavin, vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: direct and indirect effects. Innov Food Sci Emerg Technol 47:161–169. https://doi.org/10.1016/j.ifset.2018.02.014

    Article  CAS  Google Scholar 

  168. Shi X, Zou H, Sun S, Lu Z, Zhang T, Gao J, Yu C (2019) Application of high-pressure homogenization for improving the physicochemical, functional and rheological properties of myofibrillar protein. Int J Biol Macromol 138:425–432

    Article  CAS  Google Scholar 

  169. Shirgaonkar IZ, Lothe RR, Pandit AB (1998) Comments on the mechanism of microbial cell disruption in high-pressure and high-speed devices. Biotechnol Prog 14:657–660. https://doi.org/10.1021/bp980052g

    Article  CAS  PubMed  Google Scholar 

  170. Shpigelman A, Kyomugasho C, Christiaens S, Van Loey AM, Hendrickx ME (2015) The effect of high pressure homogenization on pectin: importance of pectin source and pH. Food Hydrocoll 43:189–198. https://doi.org/10.1016/j.foodhyd.2014.05.019

    Article  CAS  Google Scholar 

  171. Sidhu J, Singh R (2016) Ultra high pressure homogenization of soy milk: effect on quality attributes during storage. Beverages 2:15. https://doi.org/10.3390/beverages2020015

    Article  CAS  Google Scholar 

  172. Sila DN, Smout C, Elliot F, Van Loey A, Hendrickx M (2006) Non-enzymatic depolymerization of carrot pectin: toward a better understanding of carrot texture during thermal processing. J Food Sci 71:E1–E9. https://doi.org/10.1111/j.1365-2621.2006.tb12391.x

    Article  CAS  Google Scholar 

  173. Silva VM, Sato ACK, Barbosa G, Dacanal G, Ciro-Velásquez HJ, Cunha RL (2010) The effect of homogenisation on the stability of pineapple pulp. Int J Food Sci Technol 45:2127–2133. https://doi.org/10.1111/j.1365-2621.2010.02386.x

    Article  CAS  Google Scholar 

  174. Singha S, Bhattacharya B, Basu S (2016) Process technology of nanoemulsions in food processing. In: Grumezescu AM (ed) Nanotechnology in the agri-food industry. Volume 2, : encapsulation. Academic Press, London, pp 831–871

    Google Scholar 

  175. Slavov AM, Denev PN, Denkova ZR, Kostov GA, Denkova-Kostova RS, Chochkov RM, Deseva IN, Teneva DG (2019) Emerging cold pasteurization technologies to improve shelf life and ensure food quality. In: Galanakis CM (ed) Food quality and shelf life. Academic Press, pp 55–123

  176. Song X, Zhou C, Fu F, Chen Z, Wu Q (2013) Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Ind Crop Prod 43:538–544. https://doi.org/10.1016/j.indcrop.2012.08.005

    Article  CAS  Google Scholar 

  177. Souto EB, Anselmi C, Centini M, Müller RH (2005) Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int J Pharm 295:261–268. https://doi.org/10.1016/j.ijpharm.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  178. Stang M, Schuchmann H, Schubert H (2001) Emulsification in high-pressure homogenizers. Engineering in Life Sciences 1:151. https://doi.org/10.1002/1618-2863(200110)1:4<151::aid-elsc151>3.0.co;2-d

    Article  CAS  Google Scholar 

  179. Stephen AM, Churms SC (2016) Indroduction. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications, 2nd edn. CRC/Taylor & Francis, Boca Raton, pp 1–24

    Chapter  Google Scholar 

  180. Suárez-Jacobo Á, Rüfer CE, Gervilla R, Guamis B, Roig-Sagués AX, Saldo J (2011) Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chem 127:447–454. https://doi.org/10.1016/j.foodchem.2010.12.152

    Article  CAS  PubMed  Google Scholar 

  181. Taylor TM, Roach A, Black DG, Davidson PM, Harte F (2007) Inactivation of Escherichia coli K-12 exposed to pressures in excess of 300 MPa in a high-pressure homogenizer. J Food Prot 70:1007–1010. https://doi.org/10.4315/0362-028X-70.4.1007

    Article  PubMed  Google Scholar 

  182. Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13:427–439. https://doi.org/10.1016/S0958-6946(03)00051-7

    Article  CAS  Google Scholar 

  183. Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International 22:405–423. https://doi.org/10.1080/87559120600865164

    Article  CAS  Google Scholar 

  184. Toro-Funes N, Bosch-Fusté J, Veciana-Nogués MT, Vidal-Carou MC (2014) Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk. Food Chem 152:597–602. https://doi.org/10.1016/j.foodchem.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  185. Tran M, Roberts R, Felix TL, Harte FM (2018) Effect of high-pressure-jet processing on the viscosity and foaming properties of pasteurized whole milk. J Dairy Sci 101:3887–3899

    Article  CAS  Google Scholar 

  186. Trotta M, Gallarate M, Pattarino F, Morel S (2001) Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions. J Control Release 76:119–128. https://doi.org/10.1016/S0168-3659(01)00432-1

    Article  CAS  PubMed  Google Scholar 

  187. Trujillo AJ, Roig-Sagués AX, Zamora A, Ferragut V (2016) High-pressure homogenization for structure modification. In: Knoerzer K, Juliano P, Smithers G (eds) Innovative food processing technologies: extraction, separation, component modification and process intensification. Woodhead Publishing, Amsterdam, Netherlands, pp 315–344

    Chapter  Google Scholar 

  188. Uchiyama H, Tozuka Y, Asamoto F, Takeuchi H (2011) α-glucosyl hesperidin induced an improvement in the bioavailability of pranlukast hemihydrate using high-pressure homogenization. Int J Pharm 410:114–117. https://doi.org/10.1016/j.ijpharm.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  189. Valencia-Flores DC, Hernández-Herrero M, Guamis B, Ferragut V (2013) Comparing the effects of ultra-high-pressure homogenization and conventional thermal treatments on the microbiological, physical, and chemical quality of almond beverages. J Food Sci 78:E199–E205. https://doi.org/10.1111/1750-3841.12029

    Article  CAS  PubMed  Google Scholar 

  190. Vannini L, Lanciotti R, Baldi D, Guerzoni ME (2004) Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int J Food Microbiol 94:123–135. https://doi.org/10.1016/j.ijfoodmicro.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  191. Velázquez-Estrada RM, Hernández-Herrero MM, Rüfer CE, Guamis-López B, Roig-Sagués AX (2013) Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innov Food Sci Emerg Technol 18:89–94. https://doi.org/10.1016/j.ifset.2013.02.005

    Article  CAS  Google Scholar 

  192. Vélez-Ruíz J (2002) Relevance of rheological properties in food process engineering. In: Welti-Chanes J, Barbosa-Cánovas GV, Aguilera JM (eds) Engineering and food for the 21st century, 1st edn. CRC Press, Boca Raton, pp 307–326

    Google Scholar 

  193. Verduyn C, Suksomcheep A, Suphantharika M (1999) Effect of high pressure homogenization and papain on the preparation of autolysed yeast extract. World J Microbiol Biotechnol 15:63–71. https://doi.org/10.1023/A:1008818511497

    Article  CAS  Google Scholar 

  194. Villay A, Lakkis de Filippis F, Picton L, Le Cerf D, Vial C, Michaud P (2012) Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocoll 27:278–286. https://doi.org/10.1016/j.foodhyd.2011.10.003

    Article  CAS  Google Scholar 

  195. Walastra P (1993) Principle of emulsion formation. Chem Eng Sci 48:333–349. https://doi.org/10.1016/0009-2509(93)80021-H

    Article  Google Scholar 

  196. Wang B, Li D, Wang LJ, Chiu YL, Chen XD, Mao Z h (2008) Effect of high-pressure homogenization on the structure and thermal properties of maize starch. J Food Eng 87:436–444. https://doi.org/10.1016/j.jfoodeng.2007.12.027

    Article  CAS  Google Scholar 

  197. Wang B, Li D, Wang LJ, Liu YH, Adhikari B (2012) Effect of high-pressure homogenization on microstructure and rheological properties of alkali-treated high-amylose maize starch. J Food Eng 113:61–68. https://doi.org/10.1016/j.jfoodeng.2012.05.021

    Article  CAS  Google Scholar 

  198. Wang JM, **a N, Yang XQ, Yin SW, Qi JR, He XT, Yuan DB, Wang LJ (2012) Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties. J Agric Food Chem 60:3302–3310. https://doi.org/10.1021/jf205128v

    Article  CAS  PubMed  Google Scholar 

  199. Wang T, Sun X, Zhou Z, Chen G (2012) Effects of microfluidization process on physicochemical properties of wheat bran. Food Res Int 48:742–747. https://doi.org/10.1016/j.foodres.2012.06.015

    Article  CAS  Google Scholar 

  200. Wang Y, Li D, Wang LJ, Xue J (2011) Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydr Polym 83:489–494. https://doi.org/10.1016/j.carbpol.2010.08.015

    Article  CAS  Google Scholar 

  201. Wellala CKD, Bi J, Liu X, Liu J, Lyu J, Wu X (2019) Juice related water-soluble pectin characteristics and bioaccessibility of bioactive compounds in oil and emulsion incorporated mixed juice processed by high pressure homogenization. Food Hydrocoll 93:56–67. https://doi.org/10.1016/j.foodhyd.2019.02.011

    Article  CAS  Google Scholar 

  202. Wellala CKD, Bi J, Liu X, Liu J, Lyu J, Zhou M, Marszałek K, Trych U (2020) Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies 60. https://doi.org/10.1016/j.ifset.2019.102279

  203. Welti-Chanes J, Ochoa-Velasco CE, Guerrero-Beltrán JÁ (2009) High-pressure homogenization of orange juice to inactivate pectinmethylesterase. Innov Food Sci Emerg Technol 10:457–462. https://doi.org/10.1016/j.ifset.2009.05.012

    Article  CAS  Google Scholar 

  204. Wu F, Shi X, Zou H, Zhang T, Dong X, Zhu R, Yu C (2019) Effects of high-pressure homogenization on physicochemical, rheological and emulsifying properties of myofibrillar protein. J Food Eng 263:272–279. https://doi.org/10.1016/j.jfoodeng.2019.07.009

    Article  CAS  Google Scholar 

  205. Yang J, Liu G, Zeng H, Chen L (2018) Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties. Food Hydrocoll 83:275–286. https://doi.org/10.1016/j.foodhyd.2018.05.020

    Article  CAS  Google Scholar 

  206. Ye R, Harte F (2014) High pressure homogenization to improve the stability of casein-hydroxypropyl cellulose aqueous systems. Food Hydrocoll 35:670–677. https://doi.org/10.1016/j.foodhyd.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  207. Yi J, Kebede B, Kristiani K, Grauwet T, Van Loey A, Hendrickx M (2018) Minimizing quality changes of cloudy apple juice: the use of kiwifruit puree and high pressure homogenization. Food Chem 249:202–212. https://doi.org/10.1016/j.foodchem.2017.12.088

    Article  CAS  PubMed  Google Scholar 

  208. Yu C, Wu F, Cha Y, Zou H, Bao J, Xu R, Du M (2018) Effects of high-pressure homogenization on functional properties and structure of mussel (Mytilus edulis) myofibrillar proteins. Int J Biol Macromol 118:741–746. https://doi.org/10.1016/j.ijbiomac.2018.06.134

    Article  CAS  PubMed  Google Scholar 

  209. Yuan B, Danao MGC, Stratton JE, Weier SA, Weller CL, Lu M (2018) High pressure processing (HPP) of aronia berry purée: effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innov Food Sci Emerg Technol 47:249–255. https://doi.org/10.1016/j.ifset.2018.03.009

    Article  CAS  Google Scholar 

  210. Zamora A, Guamis B (2015) Opportunities for ultra-high-pressure homogenisation (UHPH) for the food industry. Food Eng Rev 7:130–142. https://doi.org/10.1007/s12393-014-9097-4

    Article  CAS  Google Scholar 

  211. Zayas JF (1997) Functionality of proteins in food. Springer, Berlin

    Book  Google Scholar 

  212. Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (2011) Nonthermal processing technologies for food. Wiley-Blackwell, Chichester

    Google Scholar 

  213. Zhou L, Guan Y, Bi J, Liu X, Yi J, Chen Q, Wu X, Zhou M (2017) Change of the rheological properties of mango juice by high pressure homogenization. LWT 82:121–130. https://doi.org/10.1016/j.lwt.2017.04.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the EIT Food project # 20032 “HPHC - Development and application of hydrocolloids functionalized by dynamic high pressure.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Shpigelman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, R., Okun, Z. & Shpigelman, A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. Food Eng Rev 13, 490–508 (2021). https://doi.org/10.1007/s12393-020-09239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09239-8

Keywords

Navigation