Food Processing by High-Pressure Homogenization

  • Chapter
  • First Online:
High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

Abstract

High-pressure homogenization is applied to liquid foods by devices that consist of a positive displacement pump (usually a plunger-type pump) and one or more restrictions to flow (stages) created by valves or nozzles. This chapter reviews various valves utilized in high-pressure homogenization of liquid foods. The impact of high-pressure homogenization on various functional properties of protein and polysaccharides and microbial safety of pressure homogenized products is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan GG, Peyron M (1995) Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid. Carbohydr Res 277(2):257–272

    Article  CAS  Google Scholar 

  • APV (2008). The effect of the second-stage homogenizing valve, Technical Bulletin TB# 58, p 3

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2006) Transport Phenomena, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Briñez WJ, Roig-Sagués AX, Herrero MMH, López BG (2007) Inactivation of Staphylococcus spp. strains in whole milk and orange juice using ultra high pressure homogenisation at inlet temperatures of 6 and 20 °C. Food Control 18(10):1282–1288

    Article  Google Scholar 

  • Burns P, Patrignani F, Serrazanetti D, Vinderola GC, Reinheimer JA, Lanciotti R, Guerzoni ME (2008) Probiotic crescenza cheese containing lactobacillus casei and lactobacillus acidophilus manufactured with high-pressure homogenized milk. J Dairy Sci 91(2):500–512

    Article  CAS  Google Scholar 

  • Campos FP, Cristianini M (2007) Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenisation. Innov Food Sci Emerg Technol 8(2):226–229

    Article  CAS  Google Scholar 

  • Capra ML, Patrignani F, Quiberoni ADL, Reinheimer JA, Lanciotti R, Guerzoni ME (2009) Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. Int Dairy J 19(5):336–341

    Article  CAS  Google Scholar 

  • Chaves-López C, Lanciotti R, Serio A, Paparella A, Guerzoni E, Suzzi G (2009) Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability. Food Control 20(8):691–695

    Article  Google Scholar 

  • Corredig M, Wicker L (2001) Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocoll 15(1):17–23

    Article  CAS  Google Scholar 

  • Cortes-Munoz M, Chevalier-Lucia D, Dumay E (2009) Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: effect of chilled or frozen storage. Food Hydrocoll 23(3):640–654

    Article  CAS  Google Scholar 

  • Cravotto G, Tagliapietra S, Robaldo B, Trotta M (2005) Chemical modification of chitosan under high-intensity ultrasound. Ultrason Sonochem 12(1-2):95–98

    Article  CAS  Google Scholar 

  • D’Souza DH, Su X, Roach A, Harte FM (2009) High-pressure homogenization for the inactivation of human enteric virus surrogates. J Food Prot 72(11):2418–2422

    Google Scholar 

  • Date AA, Patravale VB (2004) Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci 9(3-4):222–235

    Article  CAS  Google Scholar 

  • Datta N, Hayes MG, Deeth HC, Kelly AL (2005) Significance of frictional heating for effects of high pressure homogenisation on milk. J Dairy Res 72(04):393–399

    Article  CAS  Google Scholar 

  • Desrumaux A, Marcand J (2002) Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. Int J Food Sci Technol 37(3):263–269

    Article  CAS  Google Scholar 

  • Diels AMJ, Michiels CW (2006) High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 32(4):201–216

    Article  CAS  Google Scholar 

  • Diels AMJ, Wuytack EY, Michiels CW (2003) Modelling inactivation of Staphylococcus aureus and Yersinia enterocolitica by high-pressure homogenisation at different temperatures. Int J Food Microbiol 87(1-2):55–62

    Article  Google Scholar 

  • Donsì F, Ferrari G, Lenza E, Maresca P (2009) Main factors regulating microbial inactivation by high-pressure homogenization: operating parameters and scale of operation. Chem Eng Sci 64(3):520–532

    Article  Google Scholar 

  • Engler CR, Robinson CW (1981) Disruption of Candida utilis cells in high-pressure flow devices. Biotechnol Bioeng 23:765–780

    Article  Google Scholar 

  • Escobar D, Clark S, Ganesan V, Repiso L, Waller JC and Harte F (2011) High pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of Queso Fresco cheese

    Google Scholar 

  • Floury J, Desrumaux A, Axelos MAV, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58(3):227–238

    Article  Google Scholar 

  • Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1(2):127–134

    Article  CAS  Google Scholar 

  • Floury J, Desrumaux A, Legrand J (2002) Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. J Food Sci 67(9):3388–3395

    Article  CAS  Google Scholar 

  • Floury J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. Part B. Study of droplet break-up and recoalescence phenomena. Chem Eng Sci 59(6):1285–1294

    Article  CAS  Google Scholar 

  • Grácia-Juliá A, René M, Cortés-Muñoz M, Picart L, López-Pedemonte T, Chevalier D, Dumay E (2008) Effect of dynamic high pressure on whey protein aggregation: a comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll 22(6):1014–1032

    Article  Google Scholar 

  • Guerzoni ME, Vannini L, Lopez CC, Lanciotti R, Suzzi G, Gianotti A (1999) Effect of high pressure homogenization on microbial and chemico-physical characteristics of goat cheeses. J Dairy Sci 82(5):851–862

    Article  CAS  Google Scholar 

  • Håkansson A, Trägårdh C, Bergenståhl B (2009) Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem Eng Sci 64(12):2915–2925

    Article  Google Scholar 

  • Harte F, Venegas R (2010) A model for viscosity reduction in polysaccharides subjected to high pressure homogenization. J Texture Stud 41(1):49–61

    Article  Google Scholar 

  • Heffernan SP, Kelly AL, Mulvihill DM (2009) High-pressure-homogenised cream liqueurs: emulsification and stabilization efficiency. J Food Eng 95(3):525–531

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Heublein B, Hornig S (2006). Functional polymers based on dextran. In Polysaccharides II (pp. 199–291). Springer Berlin Heidelberg.

    Google Scholar 

  • Henry JV, Frith WJ, Fryer PJ, Norton IT (2008) Kinetically trapped food grade nano-emulsions. Foods Food Ingredients J Jpn 213:192–200

    CAS  Google Scholar 

  • Hernandez A, Harte FM (2008) Manufacture of acid gels from skim milk using high-pressure homogenization. J Dairy Sci 91(10):3761–3767

    Article  CAS  Google Scholar 

  • Iucci L, Patrignani F, Vallicelli M, Guerzoni ME, Lanciotti R (2007) Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control 18(5):558–565

    Article  CAS  Google Scholar 

  • Jedrzejas MJ (2000) Structural and functional comparison of polysaccharide-degrading enzymes. Crit Rev Biochem Mol Biol 35(3):221–251

    Article  CAS  Google Scholar 

  • Keshavarz Moore E, Hoare M, Dunnill P (1990) Disruption of baker’s yeast in a high-pressure homogenizer: new evidence on mechanism. Enzyme Microb Technol 12:764–770

    Article  Google Scholar 

  • Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta, Proteins Proteomics 1764(3):619–631

    Article  CAS  Google Scholar 

  • Korpela R, Paajanen L, Tuure T (2005) Homogenization of milk has no effect on the gastrointestinal symptoms of lactose intolerant subjects. Milchwissenschaft 60:3–6

    CAS  Google Scholar 

  • Kumar S, Thippareddi H, Subbiah J, Zivanovic S, Davidson PM, Harte F (2009) Inactivation of Escherichia coli K-12 in apple juice using combination of high-pressure homogenization and chitosan. J Food Sci 74(1):M8–M14

    Article  CAS  Google Scholar 

  • Lanciotti R, Patrignani F, Iucci L, Guerzoni ME, Suzzi G, Belletti N, Gardini F (2007) Effects of milk high pressure homogenization on biogenic amine accumulation during ripening of ovine and bovine Italian cheeses. Food Chem 104(2):693–701

    Article  CAS  Google Scholar 

  • Lanciotti R, Vannini L, Patrignani F, Iucci L, Vallicelli M, Ndagijimana M, Elisabetta Guerzoni M (2006) Effect of high pressure homogenisation of milk on cheese yield and microbiology, lipolysis and proteolysis during ripening of Caciotta cheese. J Dairy Res 73(02):216–226

    Article  CAS  Google Scholar 

  • Lee S-H, Lefèvre T, Subirade M, Paquin P (2009) Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chem 113(1):191–195

    Article  CAS  Google Scholar 

  • Li J, Goan EC, Zivanovic S, Harte FM (2010) Viscosity reduction of chitosan dispersions by high pressure homogenization

    Google Scholar 

  • López-Fandiño R (2006) Functional improvement of milk whey proteins induced by high hydrostatic pressure. Crit Rev Food Sci Nutr 46(4):351–363

    Article  Google Scholar 

  • Lopez-Pedemonte T, Brinez WJ, Roig-Sagues AX, Guamis B (2006) Fate of Staphylococcus aureus in cheese treated by ultrahigh pressure homogenization and high hydrostatic pressure. J Dairy Sci 89(12):4536–4544

    Article  CAS  Google Scholar 

  • Marie P, Perrier-Cornet JM, Gervais P (2002) Influence of major parameters in emulsification mechanisms using a high-pressure jet. J Food Eng 53(1):43–51

    Article  Google Scholar 

  • Michalski M-C, Januel C (2006) Does homogenization affect the human health properties of cow’s milk? Trends Food Sci Technol 17:423–437

    Article  CAS  Google Scholar 

  • Paajanen L, Tuure T, Vaarala O, Korpela R (2005) Homogenization of milk has no effect on milk-specific antibodies in healthy adults. Milchwissenschaft 60:239–241

    CAS  Google Scholar 

  • Pathanibul P, Taylor TM, Davidson PM, Harte F (2009) Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. Int J Food Microbiol 129(3):316–320

    Article  CAS  Google Scholar 

  • Patrignani F, Vannini L, Kamdem SLS, Lanciotti R, Guerzoni ME (2009) Effect of high pressure homogenization on Saccharomyces cerevisiae inactivation and physico-chemical features in apricot and carrot juices. Int J Food Microbiol 136(1):26–31

    Article  CAS  Google Scholar 

  • Patrignani F, Vannini L, Kamdem SLS, Lanciotti R, Guerzoni ME (2010) Potentialities of high-pressure homogenization to inactivate Zygosaccharomyces bailii in fruit juices. J Food Sci 75(2):M116–M120

    Article  CAS  Google Scholar 

  • Pereda J, Ferragut V, Buffa M, Guamis B, Trujillo AJ (2008) Proteolysis of ultra-high pressure homogenised treated milk during refrigerated storage. Food Chem 111:696–702

    Article  CAS  Google Scholar 

  • Pereda J, Ferragut V, Quevedo JM, Guamis B, Trujillo AJ (2007) Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk. J Dairy Sci 90:1081–1093

    Article  CAS  Google Scholar 

  • Pereda J, Ferragut V, Quevedo JM, Guamis B, Trujillo AJ (2009) Heat damage evaluation in ultra-high pressure homogenized milk. Food Hydrocoll 23(7):1974–1979

    Article  CAS  Google Scholar 

  • Raikar NB, Bhatia SR, Malone MF, McClements DJ, Almeida-Rivera C, Bongers P, Henson MA (2010) Prediction of emulsion drop size distributions with population balance equation models of multiple drop breakage. Colloids Surf A Physicochem Eng Asp 361(1-3):96–108

    Article  CAS  Google Scholar 

  • Roach A, Harte F (2008) Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innov Food Sci Emerg Technol 9(1):1–8

    Article  CAS  Google Scholar 

  • Roig-Sagués AX, Velázquez RM, Montealegre-Agramont P, López-Pedemonte TJ, Briñez-Zambrano WJ, Guamis-López B, Hernandez-Herrero MM (2009) Fat content increases the lethality of ultra-high-pressure homogenization on Listeria monocytogenes in milk. J Dairy Sci 92(11):5396–5402

    Article  Google Scholar 

  • San Martin F, Roach A, Harte F (2009) Rheological properties of corn oil emulsions stabilized by commercial micellar casein and high pressure homogenization. LWT Food Sci Technol 42(1):307–311

    Article  Google Scholar 

  • Shirgaonkar IZ, Lothe RR, Pandit AB (1998) Comments on the mechanism of microbial cell disruption in high-pressure and high-speed devices. Biotechnol Prog 14(4):657–660

    Article  CAS  Google Scholar 

  • Suarez-Jacobo A, Gervilla R, Guamis B, Roig-Sagues AX, Saldo J (2009) Microbial inactivation by ultra high-pressure homogenisation on fresh apple juice. High Pressure Res 29(1):46–51

    Article  CAS  Google Scholar 

  • Taylor TM, Roach A, Black DG, Davidson PM, Harte FM (2007) Inactivation of Escherichia coli K-12 exposed to pressures in excess of 300 MPa in a high-pressure homogenizer. J Food Prot 70(4):1007–1010

    Google Scholar 

  • Tetra-Pak (2003) Homogenisers. In: Tetra-Pak (ed) Tetra Pak dairy processing handbook. Tetra Pak, Lund, pp 123–130

    Google Scholar 

  • Tipvarakarnkoon T, Einhorn-Stoll U, Senge B (2010) Effect of modified Acacia gum (SUPER GUMTM) on the stabilization of coconut o/w emulsions. Food Hydrocoll 24(6):595–601

    Google Scholar 

  • Toledo RT, Moorman JE (2000) Microbial inactivation by high pressure throttling. US Patent Number: 6,120,732

    Google Scholar 

  • Tribst AAL, Franchi MA, Cristianini M, Massaguer PRD (2009) Inactivation Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock. J Food Sci 74(9):M509–M514

    Article  CAS  Google Scholar 

  • Trout GM (1948) The nutritive value of homogenized milk: a Review. J Dairy Sci 31(8):627–655

    Article  CAS  Google Scholar 

  • Valdramidis VP, Graham WD, Beattie A, Linton M, McKay A, Fearon AM, Patterson MF (2009) Defining the stability interfaces of apple juice: implications on the optimisation and design of high hydrostatic pressure treatment. Innov Food Sci Emerg Technol 10(4):396–404

    Article  CAS  Google Scholar 

  • Van Den Einde RM, Van Der Goot AJ, Boom RM (2003) Understanding molecular weight reduction of starch during heating-shearing processes. J Food Sci 68(8):2396–2404

    Article  Google Scholar 

  • Vannini L, Patrignani F, Iucci L, Ndagijimana M, Vallicelli M, Lanciotti R, Guerzoni ME (2008) Effect of a pre-treatment of milk with high pressure homogenization on yield as well as on microbiological, lipolytic and proteolytic patterns of “Pecorino” cheese. Int J Food Microbiol 128(2):329–335

    Article  CAS  Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellema A, van Boekel MAJS (1999) Dairy technology: principles of milk properties and processes. Marcel Dekker, New York

    Google Scholar 

  • Wang XY, Jiang Y, Wang YW, Huang MT, Ho CT, Huang QR (2008) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108(2):419–424

    Article  CAS  Google Scholar 

  • Welti-Chanes J, Ochoa-Velasco CE, Guerrero-Beltran JA (2009) High - pressure homogenization of orange juice to inactivate pectinmethylesterase. Innov Food Sci Emerg Technol 10(4):457–462

    Article  CAS  Google Scholar 

  • Wuytack EY, Diels AMJ, Michiels CW (2002) Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. Int J Food Microbiol 77(3):205–212

    Article  CAS  Google Scholar 

  • Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of [beta]-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41(1):61–68

    Article  CAS  Google Scholar 

  • Zamora A, Ferragut V, Jaramillo PD, Guamis B, Trujillo AJ (2007) Effects of ultra-high pressure homogenization on the cheese-making properties of milk. J Dairy Sci 90(1):13–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Harte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harte, F. (2016). Food Processing by High-Pressure Homogenization. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_7

Download citation

Publish with us

Policies and ethics

Navigation