Log in

Interface engineering of MXene-based heterostructures for lithium-sulfur batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High energy density and low cost make lithium-sulfur (Li-S) batteries as one of the next generation’s promising energy storage systems. However, the following problems need to be solved before commercialization: (i) the shuttling effect and sluggish redox kinetics of lithium polysulfides in sulfur cathode; (ii) the formation of lithium dendrites and the crack of solid electrolyte interphase; (iii) the large volume changes during charge and discharge processes. MXenes, as newly emerging two-dimensional transition metal carbides/nitrides/carbonitrides, have attracted widespread attention due to their abundant active surface terminals, adjustable vacancies, and high electrical conductivity. Designing MXene-based heterogeneous structures is expected to solve the stacking problem induced by hydrogen bonds or Van der Waals force and to provide other charming physiochemical properties. Herein, we generalize the design principles of MXene-based heterostructures and their functions, i.e., adsorption and catalysis in advanced conversion-based Li-S batteries. Firstly, the physiochemical properties of MXene and MXene-based heterostructures are briefly introduced. Secondly, the catalytic functions of MXene-based heterostructures with the compositional constituents including carbon materials, metal compounds, organic frameworks, polymers, single atoms and special high-entropy MXenes are comprehensively summarized in sulfur cathodes and lithium anodes. Finally, the challenges of MXene-based heterostructure in current Li-S batteries are pointed out and we also provide some enlightenments for future developments in high-energy-density Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  2. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    CAS  Google Scholar 

  3. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    CAS  Google Scholar 

  4. Yin, W. N.; Cai, Y. T.; **e, L. B.; Huang, H.; Zhu, E. C.; Pan, J. N.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.

  5. Li, S. D.; Zhuang, Z. C.; **a, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

    CAS  Google Scholar 

  6. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q.; Moskaleva, L. V. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  7. Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300.

    Google Scholar 

  8. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    CAS  Google Scholar 

  9. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Singleatom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    CAS  Google Scholar 

  10. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  11. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  Google Scholar 

  12. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    CAS  Google Scholar 

  13. Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

    CAS  Google Scholar 

  14. Zhang, X. Q.; **, Q.; Nan, Y. L.; Hou, L. P.; Li, B. Q.; Chen, X.; **, Z. H.; Zhang, X. T.; Huang, J. Q.; Zhang, Q. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15503–15509.

    CAS  Google Scholar 

  15. Wang, R. H.; Cui, W. S.; Chu, F. L.; Wu, F. X. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159.

    Google Scholar 

  16. Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eScience 2021, 1, 44–52.

    Google Scholar 

  17. Piao, Z. H.; **ao, P. T.; Luo, R. P.; Ma, J. B.; Gao, R. H.; Li, C.; Tan, J. Y.; Yu, K.; Zhou, G. M.; Cheng, H. M. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, 2108400.

    CAS  Google Scholar 

  18. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    CAS  Google Scholar 

  19. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  20. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

    CAS  Google Scholar 

  21. Service, R. F. Lithium-sulfur batteries poised for leap. Science 2018, 359, 1080–1081.

    CAS  Google Scholar 

  22. Sun, C. B.; Sheng, J. Z.; Zhang, Q.; Gao, R. H.; Han, Z. Y.; Li, C.; **ao, X.; Qiu, L.; Zhou, G. M. Self-extinguishing Janus separator with high safety for flexible lithium-sulfur batteries. Sci. China Mater. 2022, 65, 2169–2178.

    CAS  Google Scholar 

  23. Chen, R. J.; Zhao, T.; Wu, F. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels. Chem. Commun. 2015, 51, 18–33.

    CAS  Google Scholar 

  24. Li, C.; Zhang, Q.; Sheng, J. Z.; Chen, B.; Gao, R. H.; Piao, Z. H.; Zhong, X. W.; Han, Z. Y.; Zhu, Y. F.; Wang, J. L. et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries. Energy Environ. Sci. 2022, 15, 4289–4300.

    CAS  Google Scholar 

  25. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S batteries. ACS Nano 2023, 17, 1653–1662.

    CAS  Google Scholar 

  26. Wang, J.; Jia, L. J.; Liu, H. T.; Wang, C.; Zhong, J.; **ao, Q. B.; Yang, J.; Duan, S. R.; Feng, K.; Liu, N. et al. Multi-ion modulated single-step synthesis of a nanocarbon embedded with a defect-rich nanoparticle catalyst for a high loading sulfur cathode. ACS Appl. Mater. Interfaces 2020, 12, 12727–12735.

    CAS  Google Scholar 

  27. Wang, J.; Hu, H. M.; Duan, S. R.; **ao, Q. B.; Zhang, J.; Liu, H. T.; Kang, Q.; Jia, L. J.; Yang, J.; Xu, W. L. et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 2022, 32, 2110468.

    CAS  Google Scholar 

  28. Ren, X. D.; Liu, Z. F.; Zhang, M.; Li, D. S.; Yuan, S. X.; Lu, C. X. Review of cathode in advanced Li-S batteries: The effect of do** atoms at micro levels. ChemElectroChem. 2021, 8, 3457–3471.

    CAS  Google Scholar 

  29. Liu, W. L.; Fan, X. J.; Xu, B.; Chen, P.; Tang, D. J.; Meng, F. C.; Zhou, R. L.; Liu, J. H. MnO-inlaid hierarchically porous carbon hybrid for lithium-sulfur batteries. Nano Select 2021, 2, 573–580.

    CAS  Google Scholar 

  30. Yu, S. L.; Sun, Y. J.; Song, L. X.; Cao, X.; Chen, L.; An, X. T.; Liu, X. H.; Cai, W. L.; Yao, T.; Song, Y. Z. et al. Vanadium atom modulated electrocatalyst for accelerated Li-S chemistry. Nano Energy 2021, 89, 106414.

    CAS  Google Scholar 

  31. Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 2019, 29, 1806724.

    Google Scholar 

  32. Park, J.; Yu, B. C.; Park, J. S.; Choi, J. W.; Kim, C.; Sung, Y. E.; Goodenough, J. B. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 2017, 7, 1602567.

    Google Scholar 

  33. Han, Z. Y.; Ren, H. R.; Huang, Z. J.; Zhang, Z. J.; Zhang, Y. B.; Gu, S. C.; Zhang, C.; Liu, W. H.; Yang, J. L.; Zhou, G. M.; Yang, Q. H. et al. A permselective coating protects lithium anode toward a practical lithium-sulfur battery. ACS Nano 2013, 17, 4453–4462.

    Google Scholar 

  34. Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

    Google Scholar 

  35. Lin, D. C.; Liu, Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

    CAS  Google Scholar 

  36. Chen, P.; Wang, T. Y.; Tang, F. L.; Chen, G. L.; Wang, C. Y. Elaborate interface design of CoS2/Fe7S8/NG heterojunctions modified on a polypropylene separator for efficient lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 136990.

    CAS  Google Scholar 

  37. Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

    CAS  Google Scholar 

  38. Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J. et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020, 30, 250–259.

    Google Scholar 

  39. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

    CAS  Google Scholar 

  40. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    CAS  Google Scholar 

  41. Ronchi, R. M.; Arantes, J. T.; Santos, S. F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188.

    CAS  Google Scholar 

  42. Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64.

    CAS  Google Scholar 

  43. Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B. et al. Synthesis of Mo4ValC4 MAX Phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020, 14, 204–217.

    CAS  Google Scholar 

  44. **, Q.; Zhang, N.; Zhu, C. C.; Gao, H.; Zhang, X. T. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle lithium-sulfur batteries. Nanoscale 2018, 10, 16935–16942.

    CAS  Google Scholar 

  45. Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.

    CAS  Google Scholar 

  46. Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.

    CAS  Google Scholar 

  47. Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

    CAS  Google Scholar 

  48. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    CAS  Google Scholar 

  49. Braff, W. A.; Mueller, J. M.; Trancik, J. E. Value of storage technologies for wind and solar energy. Nat. Clim. Change 2016, 6, 964–969.

    Google Scholar 

  50. Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

    CAS  Google Scholar 

  51. Li, H.; Liu, A. M.; Ren, X. F.; Yang, Y. N.; Gao, L. G.; Fan, M. Q.; Ma, T. L. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study. Nanoscale 2019, 11, 19862–19869.

    CAS  Google Scholar 

  52. Guo, X.; **e, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

    CAS  Google Scholar 

  53. Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

    Google Scholar 

  54. Zeraati, A. S.; Mirkhani, S. A.; Sun, P. C.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021, 13, 3572–3580.

    Google Scholar 

  55. Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

    CAS  Google Scholar 

  56. Lang, Z. Q.; Zhuang, Z. C.; Li, S. K.; **a, L. X.; Zhao, Y.; Zhao, Y. L.; Han, C. H.; Zhou, L. MXene surface terminations enable strong metal–support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.

    CAS  Google Scholar 

  57. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

    Google Scholar 

  58. Shang, M. W.; Shovon, O. G.; Wong, F. E. Y.; Niu, J. J. A BF3-doped MXene dual-layer interphase for a reliable lithium-metal anode. Adv. Mater. 2023, 35, 2210111.

    CAS  Google Scholar 

  59. Gu, J. N.; Chen, H.; Shi, Y.; Cao, Z. J.; Du, Z. G.; Li, B.; Yang, S. B. Eliminating lightning-rod effect of lithium anodes via sine-wave analogous MXene layers. Adv. Energy Mater. 2022, 12, 2201181.

    CAS  Google Scholar 

  60. Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820.

    Google Scholar 

  61. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    CAS  Google Scholar 

  62. Rao, D. W.; Zhang, L. Y.; Meng, Z. S.; Zhang, X. R.; Wang, Y. H.; Qiao, G. J.; Shen, X. Q.; **a, H.; Liu, J. H.; Lu, R. F. Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J. Mater. Chem. A 2017, 5, 2328–2338.

    CAS  Google Scholar 

  63. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Google Scholar 

  64. Wang, D. S.; Li, F.; Lian, R. Q.; Xu, J.; Kan, D. X.; Liu, Y. H.; Chen, G.; Gogotsi, Y.; Wei, Y. J. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 2019, 13, 11078–11086.

    CAS  Google Scholar 

  65. Chen, Li.; Yue, L. G.; Wang, X. Y.; Wu, S. Y.; Wang, W.; Lu, D. Z.; Liu, X.; Zhou, W. L.; Li, Y. Y. Synergistically accelerating adsorption–electrocataysis of sulfur species via interfacial built-in electric field of SnS2-MXene Mott-Schottky heterojunction in Li-S batteries. Small 2023, 19, 2206462.

    CAS  Google Scholar 

  66. Huang, S. Z.; Wang, Z. H.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D. H.; Yang, H. Y. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689.

    CAS  Google Scholar 

  67. Pang, J. B.; Chang, B.; Liu, H.; Zhou, W. J. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lrtt. 2022, 7, 78–96.

    CAS  Google Scholar 

  68. Alferov, Z. I. The history and future of semiconductor heterostructures. Semiconductors 1998, 32, 1–14.

    Google Scholar 

  69. Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

    CAS  Google Scholar 

  70. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2022, 62, e202212335.

    Google Scholar 

  71. Zhang, B.; Luo, C.; Zhou, G. M.; Pan, Z. Z.; Ma, J. B.; Nishihara, H.; He, Y. B.; Kang, F. Y.; Lv, W.; Yang, Q. H. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 2021, 31, 2100793.

    CAS  Google Scholar 

  72. Gan, R. Y.; Yang, N.; Dong, Q.; Fu, N.; Wu, R.; Li, C. P.; Liao, Q.; Li, J.; Wei, Z. D. Envelo** ultrathin Ti3C2 nanosheets on carbon fibers: A high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 2020, 8, 7253–7260.

    CAS  Google Scholar 

  73. Tang, X. Y.; Gan, R. Y.; Tan, L. Q.; Tong, C.; Li, C. P.; Wei, Z. D. 3D Net-like GO-d-Ti3C2Tx MXene aerogels with catalysis/adsorption dual effects for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 55235–55242.

    CAS  Google Scholar 

  74. Liu, P.; Qu, L.; Tian, X. L.; Yi, Y. K.; **a, J. X.; Wang, T.; Nan, J. Z.; Yang, P.; Wang, T.; Fang, B. R. et al. Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 2020, 3, 2708–2718.

    CAS  Google Scholar 

  75. Zhou, H. Y.; Sui, Z. Y.; Amin, K.; Lin, L. W.; Wang, H. Y.; Han, B. H. Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 13904–13913.

    CAS  Google Scholar 

  76. Zhang, H.; Yang, L.; Zhang, P. G.; Lu, C. J.; Sha, D. W.; Yan, B. Z.; He, W.; Zhou, M.; Zhang, W.; Pan, L. et al. MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering. Adv. Mater. 2021, 33, 2008447.

    CAS  Google Scholar 

  77. Zhao, J.; Qi, Y. R.; Yang, Q. J.; Huang, T.; Wang, H.; Wang, Y. Y.; Niu, Y. B.; Liu, Y. J.; Bao, S. J.; Xu, M. W. Chessboard structured electrode design for Li-S batteries based on MXene nanosheets. Chem. Eng. J. 2022, 429, 131997.

    CAS  Google Scholar 

  78. Bao, W. Z.; **e, X. Q.; Xu, J.; Guo, X.; Song, J. J.; Wu, W. J.; Su, D. W.; Wang, G. X. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem.—Eur. J. 2017, 23, 12613–12619.

    CAS  Google Scholar 

  79. **a, J.; Chen, W. X.; Yang, Y.; Guan, X. G.; Yang, T.; **ao, M. J.; Zhang, S. C.; **ng, Y. L.; Lu, X.; Zhuo, G. M. In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium-sulfur batteries. EcoMat. 2022, 4, e12183.

    CAS  Google Scholar 

  80. Wang, T.; Liu, Y. Y.; Zhang, X. M.; Wang, J. Y.; Zhang, Y. G.; Li, Y. B.; Zhu, Y. J.; Li, G. R.; Wang, X. Interspersing partially oxidized V2C nanosheets and carbon nanotubes toward multifunctional polysulfide barriers for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 56085–56094.

    CAS  Google Scholar 

  81. Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

    Google Scholar 

  82. Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 2020, 14, 16073–16084.

    CAS  Google Scholar 

  83. Wang, Z. G.; Yu, K.; Feng, Y.; Qi, R. J.; Ren, J.; Zhu, Z. Q. VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292.

    CAS  Google Scholar 

  84. Xu, M. Y.; Wu, T. L.; Qi, J.; Zhou, D.; **ao, Z. B. V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 21429–21439.

    CAS  Google Scholar 

  85. Wu, S. Y.; Wang, W.; Shan, J. W.; Wang, X. Y.; Lu, D. Z.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Conductive 1T-VS2-MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity. Energy Storage Mater. 2022, 49, 153–163.

    Google Scholar 

  86. Tian, S. H.; Zeng, Q.; Liu, G.; Huang, J. J.; Sun, X.; Wang, D.; Yang, H. C.; Liu, Z.; Mo, X. C.; Wang, Z. X. et al. Multidimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 2022, 14, 196.

    CAS  Google Scholar 

  87. Yang, C. Y.; Li, Y.; Peng, W. C.; Zhang, F. B.; Fan, X. B. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem. Eng. J. 2022, 427, 131792.

    CAS  Google Scholar 

  88. Wang, W.; Huai, L. Y.; Wu, S. Y.; Shan, J. W.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 2021, 15, 11619–11633.

    CAS  Google Scholar 

  89. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries. Chem. Eng. J. 2022, 430, 132734.

    CAS  Google Scholar 

  90. Wang, H.; Cui, Z.; He, S. A.; Zhu, J. Q.; Luo, W.; Liu, Q.; Zou, R. J. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 189.

    CAS  Google Scholar 

  91. Meng, R. J.; Deng, Q. Y.; Peng, C. X.; Chen, B. J.; Liao, K. X.; Li, L. J.; Yang, Z. Y.; Yang, D. L.; Zheng, L.; Zhang, C. et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 2020, 35, 100991.

    CAS  Google Scholar 

  92. Li, P. Y.; Lv, H. W.; Li, Z. L.; Meng, X. P.; Lin, Z.; Wang, R. H.; Li, X. J. The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007803.

    CAS  Google Scholar 

  93. Wen, C. Y.; Guo, D. H.; Zheng, X. Z.; Li, H. F.; Sun, G. B. Hierarchical nMOF-867/MXene nanocomposite for chemical adsorption of polysulfides in lithium-sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 8231–8241.

    CAS  Google Scholar 

  94. Jiang, G. Y.; Zheng, N.; Chen, X.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309–1318.

    CAS  Google Scholar 

  95. Wang, J. T.; Zhao, T. K.; Yang, Z. H.; Chen, Y.; Liu, Y.; Wang, J. X.; Zhai, P. F.; Wu, W. J. MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 38654–38662.

    CAS  Google Scholar 

  96. Zong, H.; Hu, L.; Wang, Z. G.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem. Eng. J. 2021, 416, 129102.

    CAS  Google Scholar 

  97. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

    CAS  Google Scholar 

  98. Zhang, Y. Q.; Tang, W. W.; Zhan, R. M.; Liu, H.; Chen, H.; Yang, J. G.; Xu, M. W. An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 2019, 6, 2894–2899.

    CAS  Google Scholar 

  99. Wang, J. T.; Zhai, P. F.; Zhao, T. K.; Li, M. J.; Yang, Z. H.; Zhang, H. Q.; Huang, J. J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 2019, 320, 134558.

    CAS  Google Scholar 

  100. Cao, Y. W.; Jia, Y. C.; Meng, X. D.; Fan, X. Y.; Zhang, J.; Zhou, J.; Matoga, D.; Bielawski, C. W.; Geng, J. X. Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 137365.

    CAS  Google Scholar 

  101. Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

    CAS  Google Scholar 

  102. Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

    CAS  Google Scholar 

  103. Guo, X.; Zhang, H.; Yao, Y. Y.; **ao, C. M.; Yan, X.; Chen, K.; Qi, J. W.; Zhou, Y. J.; Zhu, Z. G.; Sun, X. Y. et al. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Appl. Catal. B: Environ. 2023, 323, 122136.

    CAS  Google Scholar 

  104. Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087.

    CAS  Google Scholar 

  105. **ao, Z. B.; Li, Z. L.; Meng, X. P.; Wang, R. H. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743.

    CAS  Google Scholar 

  106. Qu, Y. H.; Zhang, Z. A.; Zhang, X. H.; Ren, G. D.; Lai, Y. Q.; Liu, Y. X.; Li, J. Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries. Carbon 2015, 84, 399–408.

    CAS  Google Scholar 

  107. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

    CAS  Google Scholar 

  108. Gueon, D.; Hwang, J. T.; Yang, S. B.; Cho, E.; Sohn, K.; Yang, D. K.; Moon, J. H. Spherical icroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 2018, 12, 226–233.

    CAS  Google Scholar 

  109. Li, X.; Cheng, X. B.; Gao, M. X.; Ren, D. W.; Liu, Y. F.; Guo, Z. X.; Shang, C. X.; Sun, L. X.; Pan, H. G. Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes. ACS Appl. Mater. Interfaces 2017, 9, 10717–10729.

    CAS  Google Scholar 

  110. Zhang, Y. Z.; Wang, R. C.; Tang, W. Q.; Zhan, L.; Zhao, S. L.; Kang, Q.; Wang, Y. L.; Yang, S. B. Efficient polysulfide barrier of a graphene aerogel-carbon nanofibers-Ni network for high-energy-density lithium-sulfur batteries with ultrahigh sulfur content. J. Mater. Chem. A 2018, 6, 20926–20938.

    CAS  Google Scholar 

  111. Zhang, Y. Z.; Xu, G. X.; Kang, Q.; Zhan, L.; Tang, W. Q.; Yu, Y. X.; Shen, K. L.; Wang, H. C.; Chu, X.; Wang, J. Y. et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 16812–16820.

    CAS  Google Scholar 

  112. Zhang, J.; Jia, L. J.; Lin, H. Z.; Wang, J. Advances and prospects of 2D graphene-based materials/hybrids for lithium metal-sulfur full battery: From intrinsic property to catalysis modification. Adv. Energy Sustainability Res. 2022, 3, 2100187.

    CAS  Google Scholar 

  113. Zhu, J. X.; Tang, C. J.; Zhuang, Z. C.; Shi, C. W.; Li, N. R.; Zhou, L.; Mai, L. Q. Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces 2017, 9, 24584–24590.

    CAS  Google Scholar 

  114. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

    Google Scholar 

  115. Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155–169.

    CAS  Google Scholar 

  116. Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; Mcevoy, N.; Duesberg, G. S. et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

    Google Scholar 

  117. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    CAS  Google Scholar 

  118. Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; **, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 33, 346–366.

    Google Scholar 

  119. Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

    CAS  Google Scholar 

  120. Wu, C. Z.; Feng, F.; **e, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157–5183.

    CAS  Google Scholar 

  121. Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. Q.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753.

    CAS  Google Scholar 

  122. Qu, Y. J.; Shao, M. M.; Shao, Y. F.; Yang, M. Y.; Xu, J. C.; Kwok, C. T.; Shi, X. Q.; Lu, Z. G.; Pan, H. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15080–15086.

    CAS  Google Scholar 

  123. Ma, X. F.; Yin, L.; Zou, J. J.; Mi, W. B.; Wang, X. C. Strain-tailored valley polarization and magnetic anisotropy in two-dimensional 2H-VS2/Cr2C heterostructures. J. Phys. Chem. C. 2019, 123, 17440–17448.

    CAS  Google Scholar 

  124. Salavati, M.; Rabczuk, T. Application of highly stretchable and conductive two-dimensional 1T VS2 and Vse2 as anode materials for Li-, Na- and Ca-ion storage. Comput. Mater. Sci. 2019, 160, 360–367.

    CAS  Google Scholar 

  125. Li, M. Y.; Yang, D. W.; Biendicho, J. J.; Han, X.; Zhang, C. Q.; Liu, K.; Diao, J. F.; Li, J. S.; Wang, J.; Heggen, M. et al. Enhanced polysulfide conversion with highly conductive and electrocatalytic iodine-doped bismuth selenide nanosheets in lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200529.

    CAS  Google Scholar 

  126. Zhang, C. Q.; Biendicho, J. J.; Zhang, T.; Du, R. F.; Li, J. S.; Yang, X. H.; Arbiol, J.; Zhou, Y. T.; Morante, J. R.; Cabot, A. Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903842.

    Google Scholar 

  127. Wang, J. L.; Du, R.; Yu, C. B.; Xu, C. Y.; Shi, Z. Y. Application of transition metal compounds in cathode materials for lithium-sulfur battery. Ionics 2022, 28, 5275–5288.

    CAS  Google Scholar 

  128. Chen, Q.; Gong, Y. J. Applications and challenges of 2D materials in lithium metal batteries. Mater. Lab 2022, 1, 220034.

    Google Scholar 

  129. Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

    CAS  Google Scholar 

  130. Ganesan, V.; Nam, K. H.; Park, C. M. Robust polyhedral CoTe2-C nanocomposites as high-performance Li- and Na-Ion battery anodes. ACS Appl. Energy Mater. 2020, 3, 4877–4887.

    CAS  Google Scholar 

  131. Chen, Z. L.; Chen, M.; Yan, X. X.; Jia, H. X.; Fei, B.; Ha, Y.; Qing, H. L.; Yang, H. Y.; Liu, M.; Wu, R. B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 2020, 14, 6968–6979.

    CAS  Google Scholar 

  132. Wang, H. X.; Wang, Y. W.; Tan, L. X.; Fang, L.; Yang, X. H.; Huang, Z. Y.; Li, J.; Zhang, H. J.; Wang, Y. Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions. Appl. Catal. B: Environ. 2019, 244, 568–575.

    CAS  Google Scholar 

  133. Liang, Y.; **a, T.; Chang, Z. S.; **e, W. Y.; Li, Y. P.; Li, C. K.; Fan, R. M.; Wang, W. X.; Sui, Z. Y.; Chen, Q. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem. Eng. J. 2022, 437, 135314.

    CAS  Google Scholar 

  134. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    CAS  Google Scholar 

  135. Yang, Z. Y.; Peng, C. X.; Meng, R. J.; Zu, L. H.; Feng, Y. T.; Chen, B. J.; Mi, Y. L.; Zhang, C.; Yang, J. H. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for high-performance lithium-sulfur batteries. ACS Cent. Sci. 2019, 5, 1876–1883.

    CAS  Google Scholar 

  136. Zhang, X. H.; Dong, P. P.; Song, M. K. Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps 2019, 2, 591–626.

    CAS  Google Scholar 

  137. Hong, X. J.; Tang, X. Y.; Wei, Q.; Song, C. L.; Wang, S. Y.; Dong, R. F.; Cai, Y. P.; Si, L. P. Efficient encapsulation of small S2–4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 9435–9443.

    CAS  Google Scholar 

  138. He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

    Google Scholar 

  139. Xu, J.; Zhang, H.; Yu, F. T.; Cao, Y. J.; Liao, M. C.; Dong, X. L.; Wang, Y. G. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem., Int. Ed. 2022, 61, e202211933.

    CAS  Google Scholar 

  140. Cui, Y. L. S.; Cao, Z. J.; Zhang, Y. Z.; Chen, H.; Gu, J. N.; Du, Z. G.; Shi, Y. Z.; Li, B.; Yang, S. B. Single-atom sites on MXenes for energy conversion and storage. Small Sci. 2021, 1, 2100017.

    CAS  Google Scholar 

  141. Han, Z. Y.; Zhao, S. Y.; **ao, J. W.; Zhong, X. W.; Sheng, J. Z.; Lv, W.; Zhang, Q. F.; Zhou, G. M.; Cheng, H. M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S Batteries. Adv. Mater. 2021, 33, 2105947.

    CAS  Google Scholar 

  142. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    CAS  Google Scholar 

  143. **, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  144. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  145. Li, H.; Yu, B.; Zhuang, Z. C.; Sun, W. P.; Jia, B. H.; Ma, T. Y. A small change in the local atomic environment for a big improvement in single-atom catalysis. J. Mater. Chem. A 2021, 9, 4184–4192.

    CAS  Google Scholar 

  146. Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 33, 2004613.

    Google Scholar 

  147. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    CAS  Google Scholar 

  148. Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.

    Google Scholar 

  149. Lu, W.; Wang, Zhao.; Sun, G. R.; Zhang, S. M.; Cong, L. N.; Lin, L.; Chen, S. R.; Liu, J.; **e, H. M.; Liu, Y. L. Anchoring polysulfide with artificial solid electrolyte interphase for dendrite-free and low N/P ratio Li-S batteries. J. Energy Chem. 2023, 80, 32–39.

    CAS  Google Scholar 

  150. Cao, Z. J.; Zhang, Y. Z.; Cui, Y. L. S.; Li, B.; Yang, S. B. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten 2020, 2, 162–175.

    Google Scholar 

  151. Shen, K.; Cao, Z. J.; Shi, Y. Z.; Zhang, Y. Z.; Li, B.; Yang, S. B. 3D printing lithium salt towards dendrite-free lithium anodes. Energy Storage Mater. 2021, 35, 108–113.

    Google Scholar 

  152. Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028–15033.

    CAS  Google Scholar 

  153. Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

    CAS  Google Scholar 

  154. Li, B.; Zhang, D.; Liu, Y.; Yu, Y. X.; Li, S. M.; Yang, S. B. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017, 39, 654–661.

    CAS  Google Scholar 

  155. Kang, Q.; Zhuang, Z. C.; Li, Yong.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res., in press, https://doi.org/10.1007/s12274-023-5478-4.

  156. Cao, Z. J.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z. G.; Li, B.; Yang, S. B. Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 2020, 30, 1908075.

    CAS  Google Scholar 

  157. Shi, H. D.; Zhang, C. J.; Lu, P. F.; Dong, Y. F.; Wen, P. C.; Wu, Z. S. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 2019, 13, 14308–14318.

    CAS  Google Scholar 

  158. Li, W. T.; Zhang, Y. F.; Li, H.; Chen, Z. J.; Shang, T. X.; Wu, Z. T.; Zhang, C.; Li, J.; Lv, W.; Tao, Y. et al. Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batteries Supercaps 2020, 3, 892–899.

    CAS  Google Scholar 

  159. Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

    CAS  Google Scholar 

  160. Guo, D.; Ming, F. W.; Shinde, D. B.; Cao, L.; Huang, G.; Li, C. Y.; Li, Z.; Yuan, Y. Y.; Hedhili, M. N.; Alshareef, H. N. et al. Covalent assembly of two-dimensional COF-on-MXene heterostructures enables fast charging lithium hosts. Adv. Funct. Mater. 2021, 31, 2101194.

    CAS  Google Scholar 

  161. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; **ong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

    CAS  Google Scholar 

  162. Yang, T. Z.; Qian, T.; Shen, X. W.; Wang, M. F.; Liu, S. S.; Zhong, J.; Yan, C. L.; Rosei, F. Single-cluster Au as an usher for deeply cyclable Li metal anodes. J. Mater. Chem. A 2019, 7, 14496–14503.

    CAS  Google Scholar 

  163. Yang, C. P.; Yao, Y. G.; He, S. M.; **e, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

    Google Scholar 

  164. Yan, K.; Lu, Z. D.; Lee, H. W.; **ong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    CAS  Google Scholar 

  165. Sun, Y. W.; Zhou, J. Q.; Ji, H. Q.; Liu, J.; Qian, T.; Yan, C. L. Single-atom iron as lithiophilic site to minimize lithium nucleation overpotential for stable lithium metal full battery. ACS Appl. Mater. Interfaces 2019, 11, 32008–32014.

    CAS  Google Scholar 

  166. Liu, H.; Chen, X.; Cheng, X. B.; Li, B. Q.; Zhang, R.; Wang, B.; Chen, X.; Zhang, Q. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 2019, 3, 1800354.

    Google Scholar 

  167. Wang, J.; Jia, L. J.; Lin, H. Z.; Zhang, Y. G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries. ChemSusChem 2020, 13, 3404–3411.

    CAS  Google Scholar 

  168. Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

    CAS  Google Scholar 

  169. Du, Z. G.; Wu, C.; Chen, Y. C.; Cao, Z. J.; Hu, R. M.; Zhang, Y. Z.; Gu, J. N.; Cui, Y. L. S.; Chen, H.; Shi, Y. Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 2021, 33, 2101473.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program (No. 2021YFA1201503), the National Natural Science Foundation of China (Nos. 22075081, 21972164, and 22279161), the Fundamental Research Funds for the Central Universities (No. JKD01231701), and the Natural Science Foundation of Jiangsu Province (No. BK 20210130). Dr. J. Wang thanks to the fellowship awarded by the Alexander von Humboldt Foundation. Dr. Y. Zhang thanks the Shanghai Super Postdoctoral Incentive Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzheng Zhang, Jian Wang or Liang Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Li, X., Zhang, Y. et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 16, 9158–9178 (2023). https://doi.org/10.1007/s12274-023-5532-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5532-2

Keywords

Navigation