MXene Materials as Electrodes for Lithium-Sulfur Batteries

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

Exploration of new electrochemistries that go “beyond lithium-ion” to boost energy density and reduce cost is rapidly gaining momentum. In this pursuit, lithium-sulfur (Li-S) batteries that couple sulfur-positive electrodes (or “cathodes”) with lithium-negative electrodes (or “anodes”) are considered particularly promising candidates. The Li-S battery has received enormous attention in the past decade, due to the high theoretical specific energy (Wh kg−1) and earth abundance of sulfur, which is coupled with a high-energy density Li metal anode in the cell. Instead of intercalation chemistry, these batteries rely on conversion chemistry, which yields a high theoretical capacity. MXenes can provide a vital role. MXenes have been used in Li-S batteries. Delaminated MXenes are capable of high electronic conductivity and exhibit rich surface properties, which synergistically improves the electron transport properties of the sulfur electrode and provides chemical interactions with lithium polysulfides. Another advantageous aspect is MXenes denser structure compared to most “fluffy” carbonaceous materials, which benefits the volumetric energy density of the battery. This chapter provides a brief overview of the recent development of MXenes for Li-S batteries, from material aspects on tuning the physical and electrochemical properties of the sulfur cathode to their performance in prototype cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi, N. S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y. K., Amine, K., Yushin, G., Nazar, L. F., Cho, J., & Bruce, P. G. (2012). Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie, International Edition, 51, 9994.

    Article  CAS  Google Scholar 

  2. Yin, Y. X., **n, S., Guo, Y. G., & Wan, L. J. (2013). Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie, International Edition, 52, 13186–13200.

    Article  CAS  Google Scholar 

  3. Yang, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chemical Society Reviews, 42, 3018–3032.

    Article  CAS  Google Scholar 

  4. Fang, R., Zhao, S., Sun, Z., Wang, D.-W., Cheng, H.-M., & Li, F. (2017). More reliable lithium-sulfur batteries: Status, solutions and prospects. Advanced Materials, 29, 1606823.

    Article  CAS  Google Scholar 

  5. Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulfur batteries. Nature Materials, 8, 500–506.

    Article  CAS  Google Scholar 

  6. Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. (2016). Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1, 16132.

    Article  CAS  Google Scholar 

  7. Mikhaylik, Y. V., & Akridge, J. R. (2004). Polysulfide shuttle study in the Li/S battery system. Journal of the Electrochemical Society, 151, A1969–A1976.

    Article  CAS  Google Scholar 

  8. Eroglu, D., Zavadil, K. R., & Gallagher, K. G. (2015). Critical link between materials chemistry and cell-level design for high energy density and low cost lithium- transportation battery. Journal of the Electrochemical Society, 162, A982–A990.

    Article  CAS  Google Scholar 

  9. Pope, M. A., & Aksay, R. A. (2015). Structural design of cathodes for Li-S batteries. Advanced Energy Materials, 5, 201500124.

    Article  CAS  Google Scholar 

  10. **n, S., et al. (2012). Small molecules promise better lithium – Sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.

    Article  CAS  Google Scholar 

  11. Li, Z., et al. (2014). A highly ordered meso@ microporous carbon-supported @smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano, 8, 9295–9303.

    Article  CAS  Google Scholar 

  12. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high power lithium–sulfur batteries. Angewandte Chemie, International Edition, 123, 6026–6030.

    Article  Google Scholar 

  13. Song, M. K., Zhang, Y., & Cairns, E. J. (2013). A long-life, high-rate lithium/cell: A multifaceted approach to enhancing cell performance. Nano Letters, 13, 5891–5899.

    Article  CAS  Google Scholar 

  14. Song, J., et al. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Advanced Functional Materials, 24, 1243–1250.

    Article  CAS  Google Scholar 

  15. Wei Seh, Z., et al. (2013). Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–Sulphur batteries. Nature Communications, 4, 1331.

    Article  CAS  Google Scholar 

  16. Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., & Nazar, L. F. (2015). A highly efficient polysulphide mediator for lithium–Sulphur batteries. Nature Communications, 6, 5682.

    Article  Google Scholar 

  17. Seh, Z. W., et al. (2014). Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 5, 5017.

    Article  CAS  Google Scholar 

  18. Pang, Q., Kundu, D., & Nazar, L. F. (2016). A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Materials Horizons, 3, 130–136.

    Article  CAS  Google Scholar 

  19. Zhou, J., et al. (2014). Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science, 7, 2715–2724.

    Article  CAS  Google Scholar 

  20. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2016). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  21. Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    CAS  Google Scholar 

  22. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th Anniversary Article. MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005.

    Google Scholar 

  23. Barsoum, M. W. (2013). MAX Phases: Properties of machinable ternary carbides and nitrides. Weinheim: Wiley.

    Google Scholar 

  24. Mashtalir, O., Naguib, M., Mochalin, V. N., Agnese, Y. D., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  CAS  Google Scholar 

  25. Ling, Z., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111, 16676–16681.

    Article  CAS  Google Scholar 

  26. Barsoum, M. W., & Radovic, M. (2011). Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 41, 195–227.

    Article  CAS  Google Scholar 

  27. Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications, 2, 133–137.

    Article  CAS  Google Scholar 

  28. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamics study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26, 265705.

    Google Scholar 

  29. Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134, 16909–16916.

    Article  CAS  Google Scholar 

  30. Weng, H., et al. (2015). Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 92, 075436.

    Article  CAS  Google Scholar 

  31. Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.

    CAS  Google Scholar 

  32. Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q., & Nazar, L. F. (2017). Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Advanced Materials, 29, 1603040.

    Article  CAS  Google Scholar 

  33. Rao, D., Zhang, L., Wang, Y., Meng, Z., Qian, X., Liu, J., Shen, X., Qiao, G., & Lu, R. (2017). Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. Journal of Physical Chemistry C, 121, 11047–11054.

    Article  CAS  Google Scholar 

  34. Zhao, Y., & Zhao, J. (2017). Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium- batteries: A computational study. Applied Surface Science, 412, 591–598.

    Article  CAS  Google Scholar 

  35. Sim, E. S., & Chung, Y. C. (2018). Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Applied Surface Science, 435, 210–215.

    Article  CAS  Google Scholar 

  36. Sim, E. S., Yi, G. S., Je, M., Lee, Y., & Chung, Y. C. (2017). Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: A density functional theory study. Journal of Power Sources, 342, 64–69.

    Article  CAS  Google Scholar 

  37. Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie, International Edition, 54, 3907–3911.

    Article  CAS  Google Scholar 

  38. Zheng, J., et al. (2014). Lewis acid–base interactions between polysulfides and metal organic framework in lithium-sulfur batteries. Nano Letters, 14, 2345–2352.

    Article  CAS  Google Scholar 

  39. Zhao, X., et al. (2015). Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 3, 7870–7876.

    Article  CAS  Google Scholar 

  40. Wang, H. W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.

    Google Scholar 

  41. Bao, W., Su, D., Zhang, W., Guo, X., & Wang, G. (2016). 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Advanced Functional Materials, 26, 8746–8756.

    Article  CAS  Google Scholar 

  42. Bao, W., **e, X., Xu, J., Guo, X., Song, J., Wu, W., Su, D., & Wang, G. (2017). Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chemistry: A European Journal, 23, 12613–12619.

    Article  CAS  Google Scholar 

  43. Shen, C., et al. (2018). Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials, 8, 80.

    Google Scholar 

  44. Boota, M., et al. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28, 1517–1522.

    Article  CAS  Google Scholar 

  45. Peng, C., et al. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8, 6051–6060.

    Google Scholar 

  46. Xu, J., Shim, J., Park, J.-H., & Lee, S. (2016). MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Advanced Functional Materials, 26, 5328–5334.

    Google Scholar 

  47. Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2015). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie, International Edition, 55, 1138–1142.

    Article  CAS  Google Scholar 

  48. Bao, W., Liu, L., Wang, C., Choi, S., Wang, D., & Wang, G. (2018). Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new host for lithium–sulfur batteries. Advanced Energy Materials, 8, 1702485.

    Article  CAS  Google Scholar 

  49. Su, Y. S., & Manthiram, A. (2012). Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 3, 1166.

    Article  Google Scholar 

  50. Lin, C., et al. (2016). A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 4, 5993–5998.

    Article  CAS  Google Scholar 

  51. Song, J., et al. (2016). Immobilizing polysulfides with MXene-functionalized separators for stable lithium−sulfur batteries. ACS Applied Materials & Interfaces, 8, 29427–29433.

    Article  CAS  Google Scholar 

  52. Li, B., Zhang, D., Liu, Y., Yu, Y., Li, S., & Yang, S. (2017). Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 39, 654–661.

    Article  CAS  Google Scholar 

  53. Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X., & Nazar, L. F. (2017). A facile surface chemistry route to a stabilised lithium metal anode, Nat. Energy, 6, 17119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda F. Nazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, X., Nazar, L.F. (2019). MXene Materials as Electrodes for Lithium-Sulfur Batteries. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_20

Download citation

Publish with us

Policies and ethics

Navigation